231 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Benchmarking the Self-Assembly of Surfactin Biosurfactant at the Liquid–Air Interface to those of Synthetic Surfactants

    Get PDF
    The adsorption of surfactin, a lipopeptide biosurfactant, at the liquid–air interface has been investigated in this work. The maximum adsorption density and the nature and the extent of lateral interaction between the adsorbed surfactin molecules at the interface were estimated from surface tension data using the Frumkin model. The quantitative information obtained using the Frumkin model was also compared to those obtained using the Gibbs equation and the Langmuir–Szyszkowski model. Error analysis showed a better agreement between the experimental and the calculated values using the Frumkin model relative to the other two models. The adsorption of surfactin at the liquid–air interface was also compared to those of synthetic anionic, sodium dodecylbenzenesulphonate (SDBS), and nonionic, octaethylene glycol monotetradecyl ether (C14E8), surfactants. It has been estimated that the area occupied by a surfactin molecule at the interface is about 3- and 2.5-fold higher than those occupied by SDBS and C14E8 molecules, respectively. The interaction between the adsorbed molecules of the anionic biosurfactant (surfactin) was estimated to be attractive, unlike the mild repulsive interaction between the adsorbed SDBS molecules

    Glassy State Lead Tellurite Nanobelts: Synthesis and Properties

    Get PDF
    The lead tellurite nanobelts have been first synthesized in the composite molten salts (KNO3/LiNO3) method, which is cost-effective, one-step, easy to control, and performed at low-temperature and in ambient atmosphere. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectrum, energy dispersive X-ray spectroscopy and FT-IR spectrum are used to characterize the structure, morphology, and composition of the samples. The results show that the as-synthesized products are amorphous and glassy nanobelts with widths of 200–300 nm and lengths up to tens of microns and the atomic ratio of Pb:Te:O is close to 1:1.5:4. Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) and investigations of the corresponding structure and morphology change confirm that the nanobelts have low glass transition temperature and thermal stability. Optical diffuse reflectance spectrum indicates that the lead tellurite nanobelts have two optical gaps at ca. 3.72 eV and 4.12 eV. Photoluminescence (PL) spectrum and fluorescence imaging of the products exhibit a blue emission (round 480 nm)

    Flexible and Transparent All-Graphene Circuits for Quaternary Digital Modulations

    Full text link
    In modern communication system, modulation is a key function that embeds the baseband signal (information) into a carrier wave so that it can be successfully broadcasted through a medium such as air or cables. A flexible signal modulation scheme is hence essential to wide range of applications based on flexible electronics. Here we report a fully bendable all-graphene modulator circuit with the capability to encode a carrier signal with quaternary digital information for the first time. By exploiting the ambipolarity and the nonlinearity in a graphene transistor, we demonstrated two types of quaternary modulation schemes: 4-ary amplitude-shift keying (4-ASK) and quadrature phase-shift keying (QPSK). Remarkably, 4-ASK and QPSK can be realized with just 1 and 2 all-graphene transistors, respectively, representing a drastic reduction in circuit complexity when compared with conventional digital modulators. In addition, the circuit is not only flexible but also highly transparent (~95% transmittance) owing to their all-graphene design with every component (channel, interconnects, load resistor, and source/drain/gate electrodes) fabricated from graphene films. Taken together, these results represent a significant step toward achieving a high speed communication system that can be monolithically integrated on a flexible and transparent platform.Comment: 29 pages, 8 figures, 1 tabl

    PGC-1Ξ± Inhibits Oleic Acid Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells

    Get PDF
    BACKGROUND: Oleic acid (OA) stimulates vascular smooth muscle cell (VSMC) proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC-1alpha) on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA) treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis

    Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host.</p> <p>Results</p> <p>We have performed a global transcriptome analysis of the <it>A. gambiae </it>salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding <it>D7L2</it>, <it>anophelin</it>, <it>peroxidase</it>, the <it>SG2 precursor</it>, and a <it>5'nucleotidase </it>gene significantly increased probing time of <it>A. gambiae </it>mosquitoes and thereby their capacity to blood-feed.</p> <p>Conclusions</p> <p>The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.</p

    Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE: Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI
    • …
    corecore