60 research outputs found

    Primary cerebral alveolar rhabdomyosarcoma in adult

    Get PDF
    Primary cerebral rhabdomyosarcomas are very rare and malignant tumors that occur predominantly in the posterior fossa of pediatric patients. We report a rare case of primary cerebral rhabdomyosarcoma located in the supratentorial compartment of a 51 year-old woman together with a review of the pertinent Literature especially regarding the histological diagnosis and pitfalls

    Effect of probe characteristics on the subtractive hybridization efficiency of human genomic DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection sensitivity of low abundance pathogenic species by polymerase chain reaction (PCR) can be significantly enhanced by removing host nucleic acids. This selective removal can be performed using a magnetic bead-based solid phase with covalently immobilized capture probes. One of the requirements to attain efficient host background nucleic acids subtraction is the capture probe characteristics.</p> <p>Findings</p> <p>In this study we investigate how various capture probe characteristics influence the subtraction efficiency. While the primary focus of this report is the impact of probe length, we also studied the impact of probe conformation as well as the amount of capture probe attached to the solid phase. The probes were immobilized on magnetic microbeads functionalized with a phosphorous dendrimer. The subtraction efficiency was assessed by quantitative real time PCR using a single-step capture protocol and genomic DNA as target. Our results indicate that short probes (100 to 200 bp) exhibit the best subtraction efficiency. Additionally, higher subtraction efficiencies with these probes were obtained as the amount of probe immobilized on the solid phase decreased. Under optimal probes condition, our protocol showed a 90 - 95% subtraction efficiency of human genomic DNA.</p> <p>Conclusions</p> <p>The characteristics of the capture probe are important for the design of efficient solid phases. The length, conformation and abundance of the probes determine the capture efficiency of the solid phase.</p

    Is Mate Choice in Humans MHC-Dependent?

    Get PDF
    In several species, including rodents and fish, it has been shown that the Major Histocompatibility Complex (MHC) influences mating preferences and, in some cases, that this may be mediated by preferences based on body odour. In humans, the picture has been less clear. Several studies have reported a tendency for humans to prefer MHC-dissimilar mates, a sexual selection that would favour the production of MHC-heterozygous offspring, who would be more resistant to pathogens, but these results are unsupported by other studies. Here, we report analyses of genome-wide genotype data (from the HapMap II dataset) and HLA types in African and European American couples to test whether humans tend to choose MHC-dissimilar mates. In order to distinguish MHC-specific effects from genome-wide effects, the pattern of similarity in the MHC region is compared to the pattern in the rest of the genome. African spouses show no significant pattern of similarity/dissimilarity across the MHC region (relatedness coefficient, R = 0.015, p = 0.23), whereas across the genome, they are more similar than random pairs of individuals (genome-wide R = 0.00185, p<10−3). We discuss several explanations for these observations, including demographic effects. On the other hand, the sampled European American couples are significantly more MHC-dissimilar than random pairs of individuals (R = −0.043, p = 0.015), and this pattern of dissimilarity is extreme when compared to the rest of the genome, both globally (genome-wide R = −0.00016, p = 0.739) and when broken into windows having the same length and recombination rate as the MHC (only nine genomic regions exhibit a higher level of genetic dissimilarity between spouses than does the MHC). This study thus supports the hypothesis that the MHC influences mate choice in some human populations

    Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria

    Get PDF
    Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission

    Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission

    Get PDF
    The potential impact of climate warming on patterns of malaria transmission has been the subject of keen scientific and policy debate. Standard climate models (GCMs) characterize climate change at relatively coarse spatial and temporal scales. However, malaria parasites and the mosquito vectors respond to diurnal variations in conditions at very local scales. Here we bridge this gap by downscaling a series of GCMs to provide high-resolution temperature data for four different sites and show that although outputs from both the GCM and the downscaled models predict diverse but qualitatively similar effects of warming on the potential for adult mosquitoes to transmit malaria, the predicted magnitude of change differs markedly between the different model approaches. Raw GCM model outputs underestimate the effects of climate warming at both hot (3-fold) and cold (8-12 fold) extremes, and overestimate (3-fold) the change under intermediate conditions. Thus, downscaling could add important insights to the standard application of coarse-scale GCMs for biophysical processes driven strongly by local microclimatic conditions.</p
    • …
    corecore