59 research outputs found

    Volume rendering of superficial optic disc drusen: A possible new imaging technique using optical coherence tomography angiography

    Get PDF
    BACKGROUND: Optic disc drusen (ODD) are calcified deposits potentially caused by disturbances in axonal metabolism. The clinical course and visual impairment of ODD is usually mild; however, significant ocular morbidity may occur, such as visual field defects and retinal haemorrhages. Optic disc drusen may pose a diagnostic dilemma and differentiating these from other entities that can lead to similar compressive axonal distress is imperative. We present a novel technique for three-dimensional (3D) characterisation of superficial ODD based on 3D volume rendering of optical coherence tomography angiography (3DOCTA) scans. MATERIAL AND METHODS: Optical coherence tomography (Cirrus™ HD-OCT Model 5000 with AngioPlex, Carl Zeiss Meditec, Inc., Dublin, USA) scans were obtained from the optic nerve head of a healthy 22-year-old female. Consequently, 3D structural OCT data and OCTA were analysed, enabling ODD segmentation and spatial characterization. RESULTS: Volumetric analysis of superficial ODD showed a maximal drusen horizontal diameter of 223 μm, maximal vertical diameter of 268 μm, surface area of 6617 μm 2 and volume measurement of 12,875 μm 3. The drusen were characterised by a connected network of multiple drusen islands instead of forming a dense mass. Multiple vascular channels with perforating vessels were found across the drusen. CONCLUSION: Three-dimensional volume rendering of OCTA scans provided new insight on the spatio-anatomical features of superficial ODD. The new features herein described, namely multilobulated drusen islands and intradrusen channels, may directly contribute to the pathogenic events leading to transient non-embolic visual loss and small vessel occlusion secondary to ODD

    Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people

    Get PDF
    Purpose Virtual reality (VR) can be useful in explaining diseases and complications that affect children in order to improve medical communications with this vulnerable patient group. So far, children and young people’s responses to high-end medical VR environments have never been assessed. Methods An unprecedented number of 320 children and young people were given the opportunity to interact with a VR application displaying original ophthalmic volume data via a commercially available tethered head-mounted display (HMD). Participants completed three surveys: demographics and experience with VR, usability and perceived utility of this technology and the Simulator Sickness Questionnaire. The second survey also probed participants for suggestions on improvements and whether this system could be useful for increasing engagement in science. Results A total of 206 sets of surveys were received. 165 children and young people (84 female) aged 12–18 years (mean, 15 years) completed surveys that could be used for analysis. 69 participants (47.59%) were VR-naïve, and 76 (52.41%) reported that they had previous VR experience. Results show that VR facilitated understanding of ophthalmological complications and was reasonably tolerated. Lastly, exposure to VR raised children and young people’s awareness and interest in science. Conclusions The VR platform used was successfully utilized and was well accepted in children to display and interact with volume-rendered 3D ophthalmological data. Virtual reality (VR) is suitable as a novel image display platform in ophthalmology to engage children and young people

    Validation of automated artificial intelligence segmentation of optical coherence tomography images

    Get PDF
    Purpose To benchmark the human and machine performance of spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) image segmentation, i.e., pixel-wise classification, for the compartments vitreous, retina, choroid, sclera. Methods A convolutional neural network (CNN) was trained on OCT B-scan images annotated by a senior ground truth expert retina specialist to segment the posterior eye compartments. Independent benchmark data sets (30 SDOCT and 30 SSOCT) were manually segmented by three classes of graders with varying levels of ophthalmic proficiencies. Nine graders contributed to benchmark an additional 60 images in three consecutive runs. Inter-human and intra-human class agreement was measured and compared to the CNN results. Results The CNN training data consisted of a total of 6210 manually segmented images derived from 2070 B-scans (1046 SDOCT and 1024 SSOCT; 630 C-Scans). The CNN segmentation revealed a high agreement with all grader groups. For all compartments and groups, the mean Intersection over Union (IOU) score of CNN compartmentalization versus group graders’ compartmentalization was higher than the mean score for intra-grader group comparison. Conclusion The proposed deep learning segmentation algorithm (CNN) for automated eye compartment segmentation in OCT B-scans (SDOCT and SSOCT) is on par with manual segmentations by human graders

    Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this epidemiological study was to investigate the relationship of thermal discomfort with cold extremities (TDCE) to age, gender, and body mass index (BMI) in a Swiss urban population.</p> <p>Methods</p> <p>In a random population sample of Basel city, 2,800 subjects aged 20-40 years were asked to complete a questionnaire evaluating the extent of cold extremities. Values of cold extremities were based on questionnaire-derived scores. The correlation of age, gender, and BMI to TDCE was analyzed using multiple regression analysis.</p> <p>Results</p> <p>A total of 1,001 women (72.3% response rate) and 809 men (60% response rate) returned a completed questionnaire. Statistical analyses revealed the following findings: Younger subjects suffered more intensely from cold extremities than the elderly, and women suffered more than men (particularly younger women). Slimmer subjects suffered significantly more often from cold extremities than subjects with higher BMIs.</p> <p>Conclusions</p> <p>Thermal discomfort with cold extremities (a relevant symptom of primary vascular dysregulation) occurs at highest intensity in younger, slimmer women and at lowest intensity in elderly, stouter men.</p

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p

    The Potential Energy Surface in Molecular Quantum Mechanics

    Full text link
    The idea of a Potential Energy Surface (PES) forms the basis of almost all accounts of the mechanisms of chemical reactions, and much of theoretical molecular spectroscopy. It is assumed that, in principle, the PES can be calculated by means of clamped-nuclei electronic structure calculations based upon the Schr\"{o}dinger Coulomb Hamiltonian. This article is devoted to a discussion of the origin of the idea, its development in the context of the Old Quantum Theory, and its present status in the quantum mechanics of molecules. It is argued that its present status must be regarded as uncertain.Comment: 18 pages, Proceedings of QSCP-XVII, Turku, Finland 201

    Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models

    Get PDF
    The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar–Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents

    High-Performance Virtual Reality Volume Rendering of Original Optical Coherence Tomography Point-Cloud Data Enhanced With Real-Time Ray Casting

    Get PDF
    Purpose: Feasibility testing of a novel volume renders technology to display optical coherence tomography data (OCT) in a virtual reality (VR) environment. Methods: A VR program was written in C++/OpenGL to import and display volumetric OCT data in real time with 180 frames per second using a high-end computer and a tethered head-mounted display. Following exposure, participants completed a Simulator Sickness Questionnaire (SSQ) to assess for nausea, disorientation, and oculomotor disturbances. A user evaluation study of this software was conducted to explore the potential utility of this application. Results: Fifty-seven subjects completed the user testing (34 males and 23 females). Mean age was 48.5 years (range, 21–77 years). Mean acquired work experience of the 35 ophthalmologists (61.40%) included in the group was 15.46 years (range, 1–37 years). Twenty-nine participants were VR-naïve. The SSQ showed a mean total score of 5.8 (SD = 9.44) indicating that the system was well tolerated and produced minimal side effects. No difference was reported between VR-naïve participants and experienced users. Overall, immersed subjects reported an enjoyable VR-OCT presence effect. Conclusions: A usable and satisfying VR imaging technique was developed to display and interact with original OCT data. Translational Relevance: An advanced high-end VR image display method was successfully developed to provide new views and interactions in an ultra high-speed projected digital scenery using point-cloud OCT data. This represents the next generation of OCT image display technology and a new tool for patient engagement, medical education, professional training, and telecommunications
    corecore