18 research outputs found

    Randomised primary health center based interventions to improve the diagnosis and treatment of undifferentiated fever and dengue in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fever is a common reason for attending primary health facilities in Vietnam. Response of health care providers to patients with fever commonly consists of making a presumptive diagnosis and proposing corresponding treatment. In Vietnam, where malaria was brought under control, viral infections, notably dengue, are the main causes of undifferentiated fever but they are often misdiagnosed and inappropriately treated with antibiotics.</p> <p>This study investigate if educating primary health center (PHC) staff or introducing rapid diagnostic tests (RDTs) improve diagnostic resolution and accuracy for acute undifferentiated fever (AUF) and reduce prescription of antibiotics and costs for patients.</p> <p>Methods</p> <p>In a PHC randomized intervention study in southern Vietnam, the presumptive diagnoses for AUF patients were recorded and confirmed by serology on paired (acute and convalescence) sera. After one year, PHCs were randomized to four intervention arms: training on infectious diseases (A), the provision of RDTs (B), the combination (AB) and control (C). The intervention lasted from 2002 until 2006.</p> <p>Results</p> <p>The frequency of the non-etiologic diagnosis "undifferentiated fever" decreased in group AB, and - with some delay- also in group B. The diagnosis "dengue" increased in group AB, but only temporarily, although dengue was the most common cause of fever. A correct diagnosis for dengue initially increased in groups AB and B but only for AB this was sustained. Antibiotics prescriptions increased in group C. During intervention it initially declined in AB with a tendency to increase afterwards; in B it gradually declined. There was a substantial increase of patients' costs in B.</p> <p>Conclusions</p> <p>The introduction of RDTs for infectious diseases such as dengue, through free market principles, does improve the quality of the diagnosis and decreases the prescription of antibiotics at the PHC level. However, the effect is more sustainable in combination with training; without it RDTs lead to an excess of costs.</p

    A whole cell pathway screen reveals seven novel chemosensitizers to combat chloroquine resistant malaria

    Get PDF
    Due to the widespread prevalence of resistant parasites, chloroquine (CQ) was removed from front-line antimalarial chemotherapy in the 1990s despite its initial promise of disease eradication. Since then, resistance-conferring mutations have been identified in transporters such as the PfCRT, that allow for the efflux of CQ from its primary site of action, the parasite digestive vacuole. Chemosensitizing/ chemoreversing compounds interfere with the function of these transporters thereby sensitizing parasites to CQ once again. However, compounds identified thus far have disappointing in vivo efficacy and screening for alternative candidates is required to revive this strategy. In this study, we propose a simple and direct means to rapidly screen for such compounds using a fluorescent-tagged CQ molecule. When this screen was applied to a small library, seven novel chemosensitizers (octoclothepin, methiothepin, metergoline, loperamide, chlorprothixene, L-703,606 and mibefradil) were quickly elucidated, including two which showed greater potency than the classical chemosensitizers verapamil and desipramine

    Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>malaria was assessed in Chumkiri, Kampot Province, Cambodia.</p> <p>Methods</p> <p>One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For <it>P. falciparum </it>infected subjects, PCR genotyping of <it>msp1</it>, <it>msp2</it>, and <it>glurp </it>was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the <it>pfmdr1 </it>gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC<sub>50 </sub>for anti-malarial drugs.</p> <p>Results</p> <p>Among <it>P. falciparum </it>infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased <it>pfmdr1 </it>copy number, higher initial parasitaemia, higher mefloquine IC<sub>50</sub>, and longer time to parasite clearance. One <it>P. falciparum </it>isolate, from a treatment failure, had markedly elevated IC<sub>50 </sub>for both mefloquine (130 nM) and artesunate (6.7 nM). Among <it>P. vivax </it>infected subjects, 42.1% suffered recurrent <it>P. vivax </it>parasitaemia. None acquired new <it>P. falciparum </it>infection.</p> <p>Conclusion</p> <p>The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC<sub>50 </sub>suggest that artesunate resistance may be emerging on a background of mefloquine resistance.</p

    Comparative study of the efficacy and tolerability of dihydroartemisinin - piperaquine - trimethoprim versus artemether - lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Cameroon, Ivory Coast and Senegal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ACT recommended by WHO is very effective and well-tolerated. However, these combinations need to be administered for three days, which may limit adherence to treatment.</p> <p>The combination of dihydroartemisinin - piperaquine phosphate - trimethoprim (Artecom<sup>®</sup>, Odypharm Ltd), which involves treatment over two days, appears to be a good alternative, particularly in malaria-endemic areas. This study intends to compare the efficacy and tolerability of the combination dihydroartemisinin - piperaquine phosphate - trimethoprim (DPT) versus artemether - lumefantrine (AL) in the treatment of uncomplicated <it>Plasmodium falciparum </it>malaria in Cameroon, Ivory Coast and Senegal.</p> <p>Methods</p> <p>This was a randomized, controlled, open-label clinical trial with a 28-day follow-up period comparing DPT to AL as the reference drug. The study involved patients of at least two years of age, suffering from acute, uncomplicated <it>Plasmodium falciparum </it>malaria with fever. The WHO 2003 protocol was used.</p> <p>Results</p> <p>A total of 418 patients were included in the study and divided into two treatment groups: 212 in the DPT group and 206 in the AL group. The data analysis involved the 403 subjects who correctly followed the protocol (<it>per protocol </it>analysis), i.e. 206 (51.1%) in the DPT group and 197 (48.9%) in the AL group. The recovery rate at D14 was 100% in both treatment groups. The recovery rate at D28 was 99% in the DPT and AL groups before and after PCR results with one-sided 97.5% Confidence Interval of the rates difference > -1.90%. More than 96% of patients who received DPT were apyrexial 48 hours after treatment compared to 83.5% in the AL group (p < 0.001). More than 95% of the people in the DPT group had a parasite clearance time of 48 hours or less compared to approximately 90% in the AL group (p = 0.023). Both drugs were well tolerated. No serious adverse events were reported during the follow-up period. All of the adverse events observed were minor and did not result in the treatment being stopped in either treatment group. The main minor adverse events reported were vomiting, abdominal pain and pruritus.</p> <p>Conclusion</p> <p>The overall efficacy and tolerability of DPT are similar to those of AL. The ease of taking DPT and its short treatment course (two days) may help to improve adherence to treatment. Taken together, these findings make this medicinal product a treatment of choice for the effective management of malaria in Africa.</p

    Prescribing practice for malaria following introduction of artemether-lumefantrine in an urban area with declining endemicity in West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decline in malaria coinciding with the introduction of newer, costly anti-malarials has prompted studies into the overtreatment for malaria mostly in East Africa. The study presented here describes prescribing practices for malaria at health facilities in a West African country.</p> <p>Methods</p> <p>Cross-sectional surveys were carried out in two urban Gambian primary health facilities (PHFs) during and outside the malaria transmission season. Facilities were comparable in terms of the staffing compliment and capability to perform slide microscopy. Patients treated for malaria were enrolled after consultations and blood smears collected and read at a reference laboratory. Slide reading results from the PHFs were compared to the reference readings and the proportion of cases treated but with a negative test result at the reference laboratory was determined.</p> <p>Results</p> <p>Slide requests were made for 33.2% (173) of those enrolled, being more frequent in children (0-15 yrs) than adults during the wet season (p = 0.003). In the same period, requests were commoner in under-fives compared to older children (p = 0.022); however, a positive test result was 4.4 times more likely in the latter group (p = 0.010). Parasitaemia was confirmed for only 4.7% (10/215) and 12.5% (37/297) of patients in the dry and wet seasons, respectively. The negative predictive value of a PHF slide remained above 97% in both seasons.</p> <p>Conclusions</p> <p>The study provides evidence for considerable overtreatment for malaria in a West African setting comparable to reports from areas with similar low malaria transmission in East Africa. The data suggest that laboratory facilities may be under-used, and that adherence to negative PHF slide results could significantly reduce the degree of overtreatment. The "peak prevalence" in 5-15 year olds may reflect successful implementation of malaria control interventions in under-fives, but point out the need to extend such interventions to older children.</p

    Interrupting Malaria Transmission: Quantifying the Impact of Interventions in Regions of Low to Moderate Transmission

    Get PDF
    Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission

    Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rectal administration of artemisinin derivatives has potential for early treatment for severe malaria in remote settings where injectable antimalarial therapy may not be feasible. Preparations available include artesunate, artemisinin, artemether and dihydroartemisinin. However each may have different pharmacokinetic properties and more information is needed to determine optimal dose and comparative efficacy with each another and with conventional parenteral treatments for severe malaria.</p> <p>Methods</p> <p>Individual patient data from 1167 patients in 15 clinical trials of rectal artemisinin derivative therapy (artesunate, artemisinin and artemether) were pooled in order to compare the rapidity of clearance of <it>Plasmodium falciparum </it>parasitaemia and the incidence of reported adverse events with each treatment. Data from patients who received comparator treatment (parenteral artemisinin derivative or quinine) were also included. Primary endpoints included percentage reductions in parasitaemia at 12 and 24 hours. A parasite reduction of >90% at 24 hours was defined as parasitological success.</p> <p>Results</p> <p>Artemisinin and artesunate treatment cleared parasites more rapidly than parenteral quinine during the first 24 hours of treatment. A single higher dose of rectal artesunate treatment was five times more likely to achieve >90% parasite reductions at 24 hours than were multiple lower doses of rectal artesunate, or a single lower dose administration of rectal artemether.</p> <p>Conclusion</p> <p>Artemisinin and artesunate suppositories rapidly eliminate parasites and appear to be safe. There are less data on artemether and dihydroartemisinin suppositories. The more rapid parasite clearance of single high-dose regimens suggests that achieving immediate high drug concentrations may be the optimal strategy.</p

    Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective malaria control has successfully reduced the malaria burden in many countries, but to eliminate malaria, these countries will need to further improve their control efforts. Here, a malaria control programme was critically evaluated in a very low-endemicity Thai-Myanmar border population, where early detection and prompt treatment have substantially reduced, though not ended, <it>Plasmodium falciparum </it>transmission, in part due to carriage of late-maturing gametocytes that remain post-treatment. To counter this effect, the WHO recommends the use of a single oral dose of primaquine along with an effective blood schizonticide. However, while the effectiveness of primaquine as a gametocidal agent is widely documented, the mismatch between primaquine's short half-life, the long-delay for gametocyte maturation and the proper timing of primaquine administration have not been studied.</p> <p>Methods</p> <p>Mathematical models were constructed to simulate 8-year surveillance data, between 1999 and 2006, of seven villages along the Thai-Myanmar border. A simple model was developed to consider primaquine pharmacokinetics and pharmacodynamics, gametocyte carriage, and infectivity.</p> <p>Results</p> <p>In these populations, transmission intensity is very low, so the <it>P. falciparum </it>parasite rate is strongly linked to imported malaria and to the fraction of cases not treated. Given a 3.6-day half-life of gametocyte, the estimated duration of infectiousness would be reduced by 10 days for every 10-fold reduction in initial gametocyte densities. Infectiousness from mature gametocytes would last two to four weeks and sustain some transmission, depending on the initial parasite densities, but the residual mature gametocytes could be eliminated by primaquine. Because of the short half-life of primaquine (approximately eight hours), it was immediately obvious that with early administration (within three days after an acute attack), primaquine would not be present when mature gametocytes emerged eight days after the appearance of asexual blood-stage parasites. A model of optimal timing suggests that primaquine follow-up approximately eight days after a clinical episode could further reduce the duration of infectiousness from two to four weeks down to a few days. The prospects of malaria elimination would be substantially improved by changing the timing of primaquine administration and combining this with effective detection and management of imported malaria cases. The value of using primaquine to reduce residual gametocyte densities and to reduce malaria transmission was considered in the context of a malaria transmission model; the added benefit of the primaquine follow-up treatment would be relatively large only if a high fraction of patients (>95%) are initially treated with schizonticidal agents.</p> <p>Conclusion</p> <p>Mathematical models have previously identified the long duration of <it>P. falciparum </it>asexual blood-stage infections as a critical point in maintaining malaria transmission, but infectiousness can persist for two to four weeks because of residual populations of mature gametocytes. Simulations from new models suggest that, in areas where a large fraction of malaria cases are treated, curing the asexual parasitaemia in a primary infection, and curing mature gametocyte infections with an eight-day follow-up treatment with primaquine have approximately the same proportional effects on reducing the infectious period. Changing the timing of primaquine administration would, in all likelihood, interrupt transmission in this area with very good health systems and with very low endemicity.</p
    corecore