14 research outputs found

    Ubiquitous [Na+]i/[K+]i-Sensitive Transcriptome in Mammalian Cells: Evidence for Ca2+i-Independent Excitation-Transcription Coupling

    Get PDF
    Stimulus-dependent elevation of intracellular Ca2+ ([Ca2+]i) affects the expression of numerous genes – a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na+]i trigger c-Fos expression via a novel Ca2+i-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na+]i/[K+]i-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na+]i and reduce [K+]i, cells were treated for 3 hrs with the Na+,K+-ATPase inhibitor ouabain or placed for the same time in the K+-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p<0.0001; R2>0.62). Among these Na+i/K+i-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca2+]i, we performed identical experiments in Ca2+-free media supplemented with extracellular and intracellular Ca2+ chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na+i/K+i-sensitive genes. Among the ubiquitous Na+i/K+i-sensitive genes whose expression was regulated independently of the presence of Ca2+ chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca2+-depleted cells. Overall, our findings indicate that Ca2+i-independent mechanisms of excitation-transcription coupling are involved in transcriptomic alterations triggered by elevation of the [Na+]i/[K+]i ratio. There results likely have profound implications for normal and pathological regulation of mammalian cells, including sustained excitation of neuronal cells, intensive exercise and ischemia-triggered disorders

    Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles

    Get PDF
    Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Non-identity of cGMP as the guanine nucleotide stimulated to bind to ROS by light and ATP

    No full text
    Light, in the presence of ATP, has been reported to stimulate cGMP binding to a 58 kDa protein in ROS (rod outer segments, Fesenko and Krapivinsky, 1986b, Photobiochem. Photobiophys. 13 345-58). This apparent light-related redistribution of ROS cGMP has been suggested to eliminate any requirement for phosphodiesterase-promoted hydrolysis of cGMP in the mechanism subserving phototransduction. Using conditions identical to those previously reported, this effect of light and ATP was examined further by characterizing the metabolic products that arise and the nucleotides that become liganded. The increased binding of radiolabeled guanine nucleotide upon illumination of ROS in the presence of ATP was confirmed, but the species of guanine nucleotide that were stimulated to bind under these conditions were identified as [32P]GDP and [32P]GTP rather than [32P]cGMP. The precautions to prevent enzymic hydrolysis of cGMP, which included conducting the reactions at 0° and the addition of 3-isobutyl-l-methylxanthine (250 μM) to the reaction mixture did not prevent about a 20-fold increase in the rate of phosphodiesterase-catalyzed hydrolysis of radiolabeled cGMP by light when ATP was also present. This stimulation of phosphodiesterase activity is undoubtedly related to transphosphorylation by exogenous ATP of endogenous GMP and GDP involving catalytic actions of guanylate kinase and nucleoside diphosphate kinase in isolated ROS. These enzymes can also serve to generate [32P]GDP and [32P]GTP, which subsequently bind to ROS components. Such a mechanism involving ATP as phosphoryl donor was supported by observing that an analog of ATP (β.γ-methyleneadenosine 5'-triphosphate), which cannot serve as a phosphoryl donor, did not increase radiolabeled guanine nucleotide binding. Although several ROS proteins can form filter-retainable complexes with GDP and GTP, the properties of the 58 kDa protein found to be photoaffinity labeled with radioactive guanine nucleotide are most characteristic of those attributable to tubulin. The previous report that illumination in the presence of ATP stimulates the binding of cGMP to ROS components finds no support from the data obtained in the present studies.link_to_subscribed_fulltex

    Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice

    No full text
    Objectives - Recent investigations in humans and mouse models with lupus have revealed evidence of mitochondrial dysfunction and production of mitochondrial reactive oxygen species (mROS) in T cells and neutrophils. This can provoke numerous cellular changes including oxidation of nucleic acids, proteins, lipids and even induction of cell death. We have previously observed that in T cells from patients with lupus, the increased mROS is capable of provoking oligomerisation of mitochondrial antiviral stimulator (MAVS) and production of type I interferon (IFN-I). mROS in SLE neutrophils also promotes the formation of neutrophil extracellular traps (NETs), which are increased in lupus and implicated in renal damage. As a result, in addition to traditional immunosuppression, more comprehensive treatments for lupus may also include non-immune therapy, such as antioxidants. Methods - Lupus-prone MRL-lpr mice were treated from weaning for 11 weeks with the mitochondria-targeted antioxidant, MitoQ (200 µM) in drinking water. Mice were then assessed for ROS production in neutrophils, NET formation, MAVS oligomerisation, serum IFN-I, autoantibody production and renal function. Results - MitoQ-treated mice manifested reduced neutrophil ROS and NET formation, decreased MAVS oligomerisation and serum IFN-I, and reduced immune complex formation in kidneys, despite no change in serum autoantibody. Conclusions - These findings reveal the potential utility of targeting mROS in addition to traditional immunosuppressive therapy for lupus
    corecore