110 research outputs found

    Mycorrhization of fagaceae forests within mediterranean ecosystems

    Get PDF
    Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio

    Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts

    Get PDF
    Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and similar to 30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.Assembling the Tree of Life programme at NSF; NSF [EF-0531730-002, EF-0531680, EF-0531750]; Scottish Government's Rural and Environment Science and Analytical Services Division; BeiPD-cofund Marie Curie fellowshipinfo:eu-repo/semantics/publishedVersio

    HPV genotypes in the oral cavity/oropharynx of children and adolescents: cross-sectional survey in Poland

    Get PDF
    Human papillomaviruses (HPVs) are a very complex group of pathogenic viruses, with more than 80 types, causing human infection. Given the prevalence of HPV infection and its relationship with the development of cervical and many other cancers, HPV vaccine development has been a major public health initiative worldwide in the last decade. The aim of the presented study was to identify HPV DNA by MY-PCR in 4,150 school children and adolescents, aged 10–18 years in the Wielkopolska region, Poland. All individuals were asked to fill in extensive questionnaires; further normal, oral squamous cells were collected from each pupil. Cellular DNA was isolated and used as a MY-PCR template to estimate the incidence of HPV-active infection. Forty five subjects (1.08% of the sample) were carriers of oropharyngeal HPVs. HPV status and variables of interest, such as age, gender, socioeconomical status, and risk factors (smoking and sexual intercourse history, alcohol consumption) were not correlated. The presence of HPVs in the oral cavity was cumulated in several schools of the region. DNA sequencing of MY-PCR products revealed only four HPV genotypes. The most frequent genotype was HPV11 (38/45 HPV-positive cases), while other more rare genotypes were HPV6 (3/45), HPV12 (3/45), and HPV57 (1/45). Conclusion: Our findings presented herein, reveal a relatively low prevalance of oropharyngeal HPVs in Polish adolescents and fill an important gap in the knowledge of oral HPV infections of children above 10 years and adolescents

    Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cortinarius </it>species in section <it>Calochroi </it>display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) <it>C</it>. <it>arcuatorum</it>, 2) <it>C. aureofulvus</it>, 3) <it>C</it>. <it>elegantior </it>and 4) <it>C. napus</it>, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification.</p> <p>Results</p> <p>Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in <it>C</it>. <it>arcuatorum </it>and <it>C</it>. <it>elegantior</it>, while <it>C</it>. <it>aureofulvus </it>showed considerably less population structure and <it>C. napus </it>lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within <it>C</it>. <it>arcuatorum, C. aureofulvus </it>and <it>C</it>. <it>elegantior </it>show little or no morphological differentiation, whereas in <it>C. napus </it>there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of <it>C. albobrunnoides </it>and <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>were identical to one another and are treated as one species with a wider range of geographic distribution under <it>C. napus</it>.</p> <p>Conclusions</p> <p>Our results indicate that each of the <it>Calochroi </it>species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of <it>C</it>. <it>arcuatorum </it>diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in <it>C</it>. <it>elegantior </it>gave rise to the New World and Old World haplotypes, respectively; and 3) the low levels of genetic divergence within <it>C</it>. <it>aureofulvus </it>and <it>C</it>. <it>napus </it>may be the result of more recent demographic population expansions. The scenario of migration via the Bering Land Bridge provides the most probable explanation for contemporaneous disjunct geographic distributions of these species, but it does not offer an explanation for the low degree of genetic divergence between populations of <it>C. aureofulvus </it>and <it>C. napus</it>. Our findings are mostly consistent with the designation of New World allopatric populations as separate species from the European counterpart species <it>C. arcuatorum </it>and <it>C. elegantior</it>. We propose the synonymy of <it>C. albobrunnoides</it>, <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>and <it>C. subpurpureophyllus </it>var. <it>sulphureovelatus </it>with <it>C. napus</it>. The results also reinforce previous observations that linked <it>C. arcuatorum </it>and <it>C. aureofulvus </it>displaying distributions in parts of North America and Europe. Interpretations of the population structure of these fungi suggest that host tree history has heavily influenced their modern distributions; however, the complex issues related to co-migration of these fungi with their tree hosts remain unclear at this time.</p

    The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)

    Get PDF
    The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora

    Universal Artifacts Affect the Branching of Phylogenetic Trees, Not Universal Scaling Laws

    Get PDF
    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny?In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods.All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees.There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link

    An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity

    No full text
    The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the white oaks), the two largest sections of subgenus Quercus. We also distill emerging evolutionary and biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple species complexes and instances of hybridization.</jats:p
    corecore