688 research outputs found
BPS States on M5-brane in Large C-field Background
We extensively study BPS solutions of the low energy effective theory of
M5-brane in large C-field background. This provides us an opportunity to
explore the interactions turned on by C-field background through the
Nambu-Poisson structure. The BPS states considered in this paper include the
M-waves, the self-dual string (M2 ending on M5), tilted M5-brane, holomorphic
embedding of M5-brane and the intersection of two M5-branes along a 3-brane.Comment: 25 pages, reference adde
Worldvolume Superalgebra Of BLG Theory With Nambu-Poisson Structure
Recently it was proposed that the Bagger-Lambert-Gustavsson theory with
Nambu-Poisson structure describes an M5-brane in a three-form flux background.
In this paper we investigate the superalgebra associated with this theory. We
derive the central charges corresponding to M5-brane solitons in 3-form
backgrounds. We also show that double dimensional reduction of the superalgebra
gives rise to the Poisson bracket terms of a non-commutative D4-brane
superalgebra. We provide interpretations of the D4-brane charges in terms of
spacetime intersections.Comment: 23 pages; references added, section 4 clarification
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
RNA secondary structure prediction from multi-aligned sequences
It has been well accepted that the RNA secondary structures of most
functional non-coding RNAs (ncRNAs) are closely related to their functions and
are conserved during evolution. Hence, prediction of conserved secondary
structures from evolutionarily related sequences is one important task in RNA
bioinformatics; the methods are useful not only to further functional analyses
of ncRNAs but also to improve the accuracy of secondary structure predictions
and to find novel functional RNAs from the genome. In this review, I focus on
common secondary structure prediction from a given aligned RNA sequence, in
which one secondary structure whose length is equal to that of the input
alignment is predicted. I systematically review and classify existing tools and
algorithms for the problem, by utilizing the information employed in the tools
and by adopting a unified viewpoint based on maximum expected gain (MEG)
estimators. I believe that this classification will allow a deeper
understanding of each tool and provide users with useful information for
selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in
a chapter of the book `Methods in Molecular Biology'. Note that this version
of the manuscript may differ from the published versio
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
Assessment of information resources for people with hypodontia
Aim: To assess the adequacy of patient information to support understanding and decision-making for people affected by hypodontia.
Methods: 1) Questionnaire to understand the provision of patient information by dentists; 2) Systematic search to identify online open-access patient information; 3) Quality assessment of written patient information.
Results: Questionnaire response rate was 49% (319/649); 91% examined and/or treated people with hypodontia. Most general dentists referred patients to specialist services without providing written hypodontia information. The majority of dental specialists provide patient leaflets but less than a third used web-resources. Only 19% of respondents felt current resources were fit-for-purpose. Thirty-one patient resources (18 leaflets and 13 online) were assessed against quality criteria. The aim of the resource was seldom explicit, the content was often incomplete and variation in readability scores indicated high levels of literacy were required.
Discussion: Access to, and quality of, patient information for hypodontia is inadequate. Current resources are not sufficiently comprehensive to prepare young patients to engage in shared dental care decisions with their parents and/or dental professionals.
Conclusion: There is a need for improved access to, and provision of, information about hypodontia if dental professionals want to meet best practice guidance and involve patients in shared decision-making
Boundary Conditions for Interacting Membranes
We investigate supersymmetric boundary conditions in both the Bagger-Lambert
and the ABJM theories of interacting membranes. We find boundary conditions
associated to the fivebrane, the ninebrane and the M-theory wave. For the ABJM
theory we are able to understand the enhancement of supersymmetry to produce
the (4,4) supersymmetry of the self-dual string. We also include supersymmetric
boundary conditions on the gauge fields that cancel the classical gauge anomaly
of the Chern-Simons terms.Comment: 36 pages, latex, v2 minor typos correcte
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Spectrum-doubled heavy vector bosons at the LHC
We study a simple effective field theory incorporating six heavy vector bosons together with the standard-model field content. The new particles preserve custodial symmetry as well as an approximate left-right parity symmetry. The enhanced symmetry of the model allows it to satisfy precision electroweak constraints and bounds from Higgs physics in a regime where all the couplings are perturbative and where the amount of fine-tuning is comparable to that in the standard model itself. We find that the model could explain the recently observed excesses in di-boson processes at invariant mass close to 2 TeV from LHC Run 1 for a range of allowed parameter space. The masses of all the particles differ by no more than roughly 10%. In a portion of the allowed parameter space only one of the new particles has a production cross section large enough to be detectable with the energy and luminosity of Run 1, both via its decay to WZ and to Wh, while the others have suppressed production rates. The model can be tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale of the new particles higher than 3 TeV
- …
