98 research outputs found
Comprehensive analysis of blood cells and plasma identifies tissue-specific miRNAs as potential novel circulating biomarkers in cattle
Abstract Background The potential of circulating miRNAs as biomarkers of tissue function, both in health and disease, has been extensively demonstrated in humans. In addition, circulating miRNA biomarkers offer significant potential towards improving the productivity of livestock species, however, such potential has been hampered by the absence of information on the nature and source of circulating miRNA populations in these species. In addition, many miRNAs originally proposed as robust biomarkers of a particular tissue or disease in humans have been later shown not to be tissue specific and thus to actually have limited biomarker utility. In this study, we comprehensively analysed miRNA profiles in plasma and cell fractions of blood from cattle with the aim to identify tissue-derived miRNAs which may be useful as biomarkers of tissue function in this important food animal species. Results Using small RNA sequencing, we identified 92 miRNAs with significantly higher expression in plasma compared to paired blood cell samples (n = 4 cows). Differences in miRNA levels between plasma and cell fractions were validated for eight out of 10 miRNAs using RT-qPCR (n = 10 cows). Among miRNAs found to be enriched in plasma, we confirmed miR-122 (liver), miR-133a (muscle) and miR-215 (intestine) to be tissue-enriched, as reported for other species. Profiling of additional miRNAs across different tissues identified the human homologue, miR-802, as highly enriched specifically in liver. Conclusions These results provide novel information on the source of bovine circulating miRNAs and could significantly facilitate the identification of production-relevant tissue biomarkers in livestock. In particular, miR-802, a circulating miRNA not previously identified in cattle, can reportedly regulate insulin sensitivity and lipid metabolism, and thus could potentially provide a specific biomarker of liver function, a key parameter in the context of post-partum negative energy balance in dairy cows
Circulating microRNAs as novel biomarkers for diabetes mellitus.
Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications
As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli
Psychopathic individuals show a range of affective processing deficits, typically associated with the interpersonal/affective component of psychopathy. However, previous research has been inconsistent as to whether psychopathy, within both offender and community populations, is associated with deficient autonomic responses to the simple presentation of affective stimuli. Changes in pupil diameter occur in response to emotionally arousing stimuli and can be used as an objective indicator of physiological reactivity to emotion. This study used pupillometry to explore whether psychopathic traits within a community sample were associated with hypo-responsivity to the affective content of stimuli. Pupil activity was recorded for 102 adult (52 female) community participants in response to affective (both negative and positive affect) and affectively neutral stimuli, that included images of scenes, static facial expressions, dynamic facial expressions and sound-clips. Psychopathic traits were measured using the Triarchic Psychopathy Measure. Pupil diameter was larger in response to negative stimuli, but comparable pupil size was demonstrated across pleasant and neutral stimuli. A linear relationship between subjective arousal and pupil diameter was found in response to sound-clips, but was not evident in response to scenes. Contrary to predictions, psychopathy was unrelated to emotional modulation of pupil diameter across all stimuli. The findings were the same when participant gender was considered. This suggests that psychopathy within a community sample is not associated with autonomic hypo-responsivity to affective stimuli, and this effect is discussed in relation to later defensive/appetitive mobilisation deficits
School Effects on the Wellbeing of Children and Adolescents
Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being
Promoting advance planning for health care and research among older adults: A randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Family members are often required to act as substitute decision-makers when health care or research participation decisions must be made for an incapacitated relative. Yet most families are unable to accurately predict older adult preferences regarding future health care and willingness to engage in research studies. Discussion and documentation of preferences could improve proxies' abilities to decide for their loved ones. This trial assesses the efficacy of an advance planning intervention in improving the accuracy of substitute decision-making and increasing the frequency of documented preferences for health care and research. It also investigates the financial impact on the healthcare system of improving substitute decision-making.</p> <p>Methods/Design</p> <p>Dyads (<it>n </it>= 240) comprising an older adult and his/her self-selected proxy are randomly allocated to the experimental or control group, after stratification for type of designated proxy and self-report of prior documentation of healthcare preferences. At baseline, clinical and research vignettes are used to elicit older adult preferences and assess the ability of their proxy to predict those preferences. Responses are elicited under four health states, ranging from the subject's current health state to severe dementia. For each state, we estimated the public costs of the healthcare services that would typically be provided to a patient under these scenarios. Experimental dyads are visited at home, twice, by a specially trained facilitator who communicates the dyad-specific results of the concordance assessment, helps older adults convey their wishes to their proxies, and offers assistance in completing a guide entitled <it>My Preferences </it>that we designed specifically for that purpose. In between these meetings, experimental dyads attend a group information session about <it>My Preferences</it>. Control dyads attend three monthly workshops aimed at promoting healthy behaviors. Concordance assessments are repeated at the end of the intervention and 6 months later to assess improvement in predictive accuracy and cost savings, if any. Copies of completed guides are made at the time of these assessments.</p> <p>Discussion</p> <p>This study will determine whether the tested intervention guides proxies in making decisions that concur with those of older adults, motivates the latter to record their wishes in writing, and yields savings for the healthcare system.</p> <p>Trial Registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN89993391">ISRCTN89993391</a></p
Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster
<p>Abstract</p> <p>Background</p> <p>The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in <it>Drosophila </it>different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in <it>Drosophila </it>Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response.</p> <p>Results</p> <p>Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3<sup>rd </sup>instar larvae and we show that 20E-induced levels of <it>EcR </it>isoforms <it>EcR-RA, ER-RC</it>, and <it>EcR-RD/E </it>differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types.</p> <p>Conclusions</p> <p>We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.</p
Early Second-Trimester Serum MiRNA Profiling Predicts Gestational Diabetes Mellitus
BACKGROUND: Gestational diabetes mellitus (GDM) is one type of diabetes that presents during pregnancy and significantly increases the risk of a number of adverse consequences for the fetus and mother. The microRNAs (miRNA) have recently been demonstrated to abundantly and stably exist in serum and to be potentially disease-specific. However, no reported study investigates the associations between serum miRNA and GDM. METHODOLOGY/PRINCIPAL FINDINGS: We systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to screen miRNAs in serum collected at 16-19 gestational weeks. The expression levels of three miRNAs (miR-132, miR-29a and miR-222) were significantly decreased in GDM women with respect to the controls in similar gestational weeks in our discovery evaluation and internal validation, and two miRNAs (miR-29a and miR-222) were also consistently validated in two-centric external validation sample sets. In addition, the knockdown of miR-29a could increase Insulin-induced gene 1 (Insig1) expression level and subsequently the level of Phosphoenolpyruvate Carboxy Kinase2 (PCK2) in HepG2 cell lines. CONCLUSIONS/SIGNIFICANCE: Serum miRNAs are differentially expressed between GDM women and controls and could be candidate biomarkers for predicting GDM. The utility of miR-29a, miR-222 and miR-132 as serum-based non-invasive biomarkers warrants further evaluation and optimization
Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2
Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy
Emergence of Minor Drug-Resistant HIV-1 Variants after Triple Antiretroviral Prophylaxis for Prevention of Vertical HIV-1 Transmission
Background: WHO-guidelines for prevention of mother-to-child transmission of HIV-1 in resource-limited settings recommend complex maternal antiretroviral prophylaxis comprising antenatal zidovudine (AZT), nevirapine single-dose (NVP-SD) at labor onset and AZT/lamivudine (3TC) during labor and one week postpartum. Data on resistance development selected by this regimen is not available. We therefore analyzed the emergence of minor drug-resistant HIV-1 variants in Tanzanian women following complex prophylaxis. Method: 1395 pregnant women were tested for HIV-1 at Kyela District Hospital, Tanzania. 87/202 HIV-positive women started complex prophylaxis. Blood samples were collected before start of prophylaxis, at birth and 1–2, 4–6 and 12–16 weeks postpartum. Allele-specific real-time PCR assays specific for HIV-1 subtypes A, C and D were developed and applied on samples of mothers and their vertically infected infants to quantify key resistance mutations of AZT (K70R/T215Y/T215F), NVP (K103N/Y181C) and 3TC (M184V) at detection limits of,1%. Results: 50/87 HIV-infected women having started complex prophylaxis were eligible for the study. All women took AZT with a median duration of 53 days (IQR 39–64); all women ingested NVP-SD, 86 % took 3TC. HIV-1 resistance mutations were detected in 20/50 (40%) women, of which 70 % displayed minority species. Variants with AZT-resistance mutations were found in 11/50 (22%), NVP-resistant variants in 9/50 (18%) and 3TC-resistant variants in 4/50 women (8%). Three wome
A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila
The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component
- …
