269 research outputs found
A Systematic Approach for Evaluating Satellite Communications Systems
The aerospace environment imposes straight opera- tive conditions so every electronic system usually needs to be validated for these. The same way, communica- tion systems need to be evaluated before their intro- duction in aerospace applications. In the paper we present a new methodology for the evaluation of com- munication systems in space applications. The meth- odology aims, by abstraction, at identifying all the critical aspects for the evaluation and at defining a standard and reusable framework in order to be appli- cable to any Communication Systems. The methodol- ogy has been applied for the evaluation of three Data Bus for satellite communications: 1553, 1-Wire and Profibus DP RS 485 based systems have been analyzed and evaluate
Single-Event Upset Analysis and Protection in High Speed Circuits
The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo
EXFI: a low cost Fault Injection System for embedded Microprocessor-based Boards
Evaluating the faulty behavior of low-cost embedded microprocessor-based boards is an increasingly important issue, due to their adoption in many safety critical systems. The architecture of a complete Fault Injection environment is proposed, integrating a module for generating a collapsed list of faults, and another for performing their injection and gathering the results. To address this issue, the paper describes a software-implemented Fault Injection approach based on the Trace Exception Mode available in most microprocessors. The authors describe EXFI, a prototypical system implementing the approach, and provide data about some sample benchmark applications. The main advantages of EXFI are the low cost, the good portability, and the high efficienc
A novel algorithm and hardware architecture for fast video-based shape reconstruction of space debris
In order to enable the non-cooperative rendezvous, capture, and removal of large space debris, automatic recognition of the target is needed. Video-based techniques are the most suitable in the strict context of space missions, where low-energy consumption is fundamental, and sensors should be passive in order to avoid any possible damage to external objects as well as to the chaser satellite.
This paper presents a novel fast shape-from-shading (SfS) algorithm and a field-programmable gate array (FPGA)-based system hardware architecture for video-based shape reconstruction of space debris. The FPGA-based architecture, equipped with a pair of cameras, includes a fast image pre-processing module, a core implementing a feature-based stereo-vision approach, and a processor that executes the novel SfS algorithm.
Experimental results show the limited amount of logic resources needed to implement the proposed architecture, and the timing improvements with respect to other state-of-the-art SfS methods. The remaining resources available in the FPGA device can be exploited to integrate other vision-based techniques to improve the comprehension of debris model, allowing a fast evaluation of associated kinematics in order to select the most appropriate approach for capture of the target space debris
Agent Based Test and Repair of Distributed Systems
This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities.
Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks.
An experimental solution is presented, and future developments of the proposed approach are explored
Flash-memories in Space Applications: Trends and Challenges
Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space applications
An improved fault mitigation strategy for CUDA Fermi GPUs
High computation is a predominant requirement in many applications. In this field, Graphic Processing Units (GPUs) are more and more adopted. Low prices and high parallelism let GPUs be attractive, even in safety critical applications. Nonetheless, new methodologies must be studied and developed to increase the dependability of GPUs. This paper presents an improved fault mitigation strategy against permanent faults for CUDA Fermi GPUs. The proposed approach exploits the reverse engineering of the block scheduling policy in CUDA Fermi GPUs in order to minimize the fault mitigation timing overhead. The graceful performance degradation achieved by the proposed technique outperforms multithreaded CPU implementations and other fault mitigation strategies for CUDA GPU, even in presence of multiple permanent faults
A Systematic Approach for Evaluating Satellite Communications Systems
The aerospace environment imposes straight opera- tive conditions so every electronic system usually needs to be validated for these. The same way, communica- tion systems need to be evaluated before their intro- duction in aerospace applications. In the paper we present a new methodology for the evaluation of com- munication systems in space applications. The meth- odology aims, by abstraction, at identifying all the critical aspects for the evaluation and at defining a standard and reusable framework in order to be appli- cable to any Communication Systems. The methodol- ogy has been applied for the evaluation of three Data Bus for satellite communications: 1553, 1-Wire and Profibus DP RS 485 based systems have been analyzed and evaluated
ATPG for Dynamic Burn-In Test in Full-Scan Circuits
Yield and reliability are two key factors affecting costs and profits in the semiconductor industry. Stress testing is a technique based on the application of higher than usual levels of stress to speed up the deterioration of electronic devices and increase yield and reliability. One of the standard industrial approaches for stress testing is high temperature burn-in. This work proposes a full-scan circuit ATPG for dynamic burn-in. The goal of the proposed ATPG approach is to generate test patterns able to force transitions into each node of a full scan circuit to guarantee a uniform distribution of the stress during the dynamic burn-in tes
- …