16 research outputs found

    Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North

    Get PDF

    The Immunosuppressive Activity of Polymeric Micellar Formulation of Cyclosporine A: In Vitro and In Vivo Studies

    No full text
    We have previously developed micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and delivery of cyclosporine A (CsA). These micelles were able to reduce the renal uptake and nephrotoxicity of CsA. The purpose of the current study was to test the efficacy of polymeric micellar formulation of CsA (PM-CsA) in suppressing immune responses by either T cells or dendritic cells (DCs). The performance of PM-CsA was compared to that of the commercially available formulation of CsA (Sandimmune®). Our results demonstrate that PM-CsA could exert a potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo. Both formulations inhibited phenotypic maturation of DCs and impaired their allostimulatory capacity. Furthermore, both PM-CsA and Sandimmune® have shown similar dose-dependent inhibition of in vitro T cell proliferative responses. A similar pattern was observed in the in vivo study, where T cells isolated from both PM-CsA-treated and Sandimmune®-treated mice have shown impairment in their proliferative response and IFN-γ production at similar levels. These results highlight the potential of polymeric micelles to serve as efficient vehicles for the delivery of CsA

    Sciatic Nerve Injury Associated with Acetabular Fractures

    No full text
    Sciatic nerve injuries associated with acetabular fractures may be a result of the initial trauma or injury at the time of surgical reconstruction. Patients may present with a broad range of symptoms ranging from radiculopathy to foot drop. There are several posttraumatic, perioperative, and postoperative causes for sciatic nerve palsy including fracture–dislocation of the hip joint, excessive tension or inappropriate placement of retractors, instrument- or implant-related complications, heterotopic ossification, hematoma, and scarring. Natural history studies suggest that nerve recovery depends on several factors. Prevention requires attention to intraoperative limb positioning, retractor placement, and instrumentation. Somatosensory evoked potentials and spontaneous electromyography may help minimize iatrogenic nerve injury. Heterotopic ossification prophylaxis can help reduce delayed sciatic nerve entrapment. Reports on sciatic nerve decompression are not uniformly consistent but appear to have better outcomes for sensory than motor neuropathy
    corecore