1,397 research outputs found
Opioid therapy for chronic non-cancer pain: guidelines for Hong Kong
published_or_final_versio
Mucocele-like tumor and columnar cell hyperplasia of the breast occurring in a morphologic continuum
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Random walk with barriers: Diffusion restricted by permeable membranes
Restrictions to molecular motion by barriers (membranes) are ubiquitous in
biological tissues, porous media and composite materials. A major challenge is
to characterize the microstructure of a material or an organism
nondestructively using a bulk transport measurement. Here we demonstrate how
the long-range structural correlations introduced by permeable membranes give
rise to distinct features of transport. We consider Brownian motion restricted
by randomly placed and oriented permeable membranes and focus on the
disorder-averaged diffusion propagator using a scattering approach. The
renormalization group solution reveals a scaling behavior of the diffusion
coefficient for large times, with a characteristically slow inverse square root
time dependence. The predicted time dependence of the diffusion coefficient
agrees well with Monte Carlo simulations in two dimensions. Our results can be
used to identify permeable membranes as restrictions to transport in disordered
materials and in biological tissues, and to quantify their permeability and
surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde
Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.
Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda
Saliva Viral Load Better Correlates with Clinical and Immunological Profiles in Children with Coronavirus Disease 2019
BACKGROUND: Pediatric COVID-19 studies exploring the relationships between NPS and saliva viral loads, clinical and immunological profiles are lacking. METHODS: Demographics, immunological profiles, nasopharyngeal swab (NPS), and saliva samples collected on admission, and hospital length of stay (LOS) were assessed in children below 18 years with COVID-19. FINDINGS: 91 patients were included between March and August 2020. NPS and saliva viral loads were correlated (r=0.315, p=0.01). Symptomatic patients had significantly higher NPS and saliva viral loads than asymptomatic patients. Serial NPS and saliva viral load measurements showed that the log10 NPS (r=-0.532, p<0.001) and saliva (r=-0.417, p<0.001) viral loads for all patients were inversely correlated with the days from symptom onset with statistical significance. Patients with cough, sputum, and headache had significantly higher saliva, but not NPS, viral loads. Higher saliva, but not NPS, viral loads were associated with total lymphopenia, CD3 and CD4 lymphopenia (all p<0.05), and were inversely correlated with total lymphocyte (r=-0.43), CD3 (r=-0.55), CD4 (r=-0.60), CD8 (r=-0.41), B (r=-0.482), and NK (r=-0.416) lymphocyte counts (all p<0.05). Interpretation: Saliva viral loads on admission in children correlated better with clinical and immunological profiles than NPS
Design principles for riboswitch function
Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands
Phase II Evaluation of Sensitivity and Specificity of PCR and NASBA Followed by Oligochromatography for Diagnosis of Human African Trypanosomiasis in Clinical Samples from D.R. Congo and Uganda
Diagnosis plays a central role in the control of human African trypanosomiasis (HAT) whose mainstay in disease control is chemotherapy. However, accurate diagnosis is hampered by the absence of sensitive techniques for parasite detection. Without concentrating the blood, detection thresholds can be as high as 10,000 trypanosomes per milliliter of blood. The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) are promising molecular diagnostics that generally yield high sensitivity and could improve case detection. Recently, these two tests were coupled to oligochromatography (OC) for simplified and standardized detection of amplified products, eliminating the need for electrophoresis. In this study, we evaluated the diagnostic accuracy of these two novel tests on blood specimens from HAT patients and healthy endemic controls from D.R. Congo and Uganda. Both tests exhibited good sensitivity and specificity compared to the current diagnostic tests and may be valuable tools for sensitive and specific parasite detection in clinical specimens. These standardized molecular test formats open avenues for improved case detection, particularly in epidemiological studies and in disease diagnosis at reference centres
Epigenetic Silencing of Nucleolar rRNA Genes in Alzheimer's Disease
Background: Ribosomal deficits are documented in mild cognitive impairment (MCI), which often represents an early stage Alzheimer’s disease (AD), as well as in advanced AD. The nucleolar rRNA genes (rDNA), transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation. Methodology/Principal Findings: To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups. Conclusions/Significance: In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosoma
Improving delirium care in the intensive care unit: The design of a pragmatic study
<p>Abstract</p> <p>Background</p> <p>Delirium prevalence in the intensive care unit (ICU) is high. Numerous psychotropic agents are used to manage delirium in the ICU with limited data regarding their efficacy or harms.</p> <p>Methods/Design</p> <p>This is a randomized controlled trial of 428 patients aged 18 and older suffering from delirium and admitted to the ICU of Wishard Memorial Hospital in Indianapolis. Subjects assigned to the intervention group will receive a multicomponent pharmacological management protocol for delirium (PMD) and those assigned to the control group will receive no change in their usual ICU care. The primary outcomes of the trial are (1) delirium severity as measured by the Delirium Rating Scale revised-98 (DRS-R-98) and (2) delirium duration as determined by the Confusion Assessment Method for the ICU (CAM-ICU). The PMD protocol targets the three neurotransmitter systems thought to be compromised in delirious patients: dopamine, acetylcholine, and gamma-aminobutyric acid. The PMD protocol will target the reduction of anticholinergic medications and benzodiazepines, and introduce a low-dose of haloperidol at 0.5-1 mg for 7 days. The protocol will be delivered by a combination of computer (artificial intelligence) and pharmacist (human intelligence) decision support system to increase adherence to the PMD protocol.</p> <p>Discussion</p> <p>The proposed study will evaluate the content and the delivery process of a multicomponent pharmacological management program for delirium in the ICU.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00842608">NCT00842608</a></p
- …