183 research outputs found

    The antiaging role of oxytocin

    Get PDF
    No abstract availabl

    Extracellular Vesicles miRNA Cargo for Microglia Polarization in Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide, and despite its high dissemination, effective pharmacotherapies are lacking. TBI can be divided into two phases: the instantaneous primary mechanical injury, which occurs at the moment of insult, and the delayed secondary injury, which involves a cascade of biological processes that lead to neuroinflammation. Neuroinflammation is a hallmark of both acute and chronic TBI, and it is considered to be one of the major determinants of the outcome and progression of disease. In TBI one of the emerging mechanisms for cell-cell communication involved in the immune response regulation is represented by Extracellular Vesicles (EVs). These latter are produced by all cell types and are considered a fingerprint of their generating cells. Exosomes are the most studied nanosized vesicles and can carry a variety of molecular constituents of their cell of origin, including microRNAs (miRNAs). Several miRNAs have been shown to target key neuropathophysiological pathways involved in TBI. The focus of this review is to analyze exosomes and their miRNA cargo to modulate TBI neuroinflammation providing new strategies for prevent long-term progression of disease

    Functional Role of Non-Muscle Myosin II in Microglia: An Updated Review.

    Get PDF
    Myosins are a remarkable superfamily of actin-based motor proteins that use the energy derived from ATP hydrolysis to translocate actin filaments and to produce force. Myosins are abundant in different types of tissues and involved in a large variety of cellular functions. Several classes of the myosin superfamily are expressed in the nervous system; among them, non-muscle myosin II (NM II) is expressed in both neurons and non-neuronal brain cells, such as astrocytes, oligodendrocytes, endothelial cells, and microglia. In the nervous system, NM II modulates a variety of functions, such as vesicle transport, phagocytosis, cell migration, cell adhesion and morphology, secretion, transcription, and cytokinesis, as well as playing key roles during brain development, inflammation, repair, and myelination functions. In this review, we will provide a brief overview of recent emerging roles of NM II in resting and activated microglia cells, the principal regulators of immune processes in the central nervous system (CNS) in both physiological and pathological conditions. When stimulated, microglial cells react and produce a number of mediators, such as pro-inflammatory cytokines, free radicals, and nitric oxide, that enhance inflammation and contribute to neurodegenerative diseases. Inhibition of NM II could be a new therapeutic target to treat or to prevent CNS diseases

    Beneficial Effects of Spirulina Consumption on Brain Health

    Get PDF
    Spirulina is a microscopic, filamentous cyanobacterium that grows in alkaline water bodies. It is extensively utilized as a nutraceutical food supplement all over the world due to its high levels of functional compounds, such as phycocyanins, phenols and polysaccharides, with anti-inflammatory, antioxidant, immunomodulating properties both in vivo and in vitro. Several scientific publications have suggested its positive effects in various pathologies such as cardiovascular diseases, hypercholesterolemia, hyperglycemia, obesity, hypertension, tumors and inflammatory diseases. Lately, different studies have demonstrated the neuroprotective role of Spirulina on the development of the neural system, senility and a number of pathological conditions, including neurological and neurodegenerative diseases. This review focuses on the role of Spirulina in the brain, highlighting how it exerts its beneficial anti-inflammatory and antioxidant effects, acting on glial cell activation, and in the prevention and/or progression of neurodegenerative diseases, in particular Parkinson's disease, Alzheimer's disease and Multiple Sclerosis; due to these properties, Spirulina could be considered a potential natural drug

    Mind‐mindedness and parenting stress in mothers of preterm and full‐term infants: The moderating role of perceived social support

    Get PDF
    The goal of this study was to examine the effects of preterm birth and maternal childbirth‐related posttraumatic stress and parenting stress on maternal mind‐mindedness (MM). The study also investigated the effects of perceived social support on parenting stress and MM. Sixty‐five preterm (N = 32) and full‐term (N = 33) mother–infant dyads were observed at 6 months. Measures of maternal MM were obtained from observations of mother–infant interaction. Mothers also provided ratings of their posttraumatic stress disorder (PTSD) symptoms, parenting stress, and perceived social support via an online survey. Experiencing a preterm birth did not affect mothers’ use of mental state descriptors during mother–infant interaction. Neither childbirth‐related posttraumatic stress nor parenting stress directly affected maternal ability to comment on the child's mental states appropriately. However, at medium and high levels of perceived social support, a negative association between parenting stress and MM was observed. Maternal perception of being emotionally supported by significant others promoted MM in mothers showing low or mild levels of parenting stress, but not in mothers experiencing high stress in parenting their infants. Results suggest that a proclivity to MM might be affected by the interaction between parenting stress and social support, rather than by childbirth‐related variables, such as prematurity

    Using Glycerol to Produce European Sea Bass Feed With Oleaginous Microbial Biomass: Effects on Growth Performance, Filet Fatty Acid Profile, and FADS2 Gene Expression

    Get PDF
    Using a circular economy concept, the present study investigated the use of crude glycerol, a primary by-product of biodiesel production, as a low-priced nutrient source for heterotrophic cultivation of the fungus-like protist Schizochytrium limacinum SR21 strain. The whole biomass of this oleaginous microorganism, rich in docosahexaenoic acid (DHA) and high-quality proteins, was then paired with a vegetable oil (VO) source and used to replace fish oil (FO) in European sea bass (Dicentrarchus labrax) feeds. Four nutritionally balanced diets were formulated: diet FO (a FO-based diet), diet VO + 0 (a VO-based diet without S. limacinum), and diets VO + 5 and VO + 10 that were VO-based feeds supplemented with 5 and 10% of S. limacinum, respectively. After a 3-month feeding trial, fish of all dietary groups tripled their initial weight, but growth and feeding efficiencies of D. labrax were not significantly different among treatments. Although the formulated diets were balanced for polyunsaturated fatty acids (PUFAs), fish fed with feeds containing either VO or VO plus 5 and 10% of S. limacinum biomass had significantly higher levels of PUFAs in the flesh than fish fed the FO-based diet. Values of health-related lipid indexes, such as atherogenicity index, thrombogenicity index, and flesh lipid quality as well as n-6/n-3 and PUFAs/SFAs ratios confirmed the high nutritional value of sea bass filet, thus representing a healthy product for human consumption. Although the PUFAs/SFAs ratio showed a significantly higher value in fish fed with VO-based diets supplemented with S. limacinum than in those fed with FO diet, suggesting a better filet quality, the n-6/n-3 ratio clearly indicated that filet quality of dietary group FO was best (value of 0.55) and that of group VO + 10 second best (value of 0.98). We also evaluated the nutritional regulation of 16-desaturase (or fads2) gene expression in European sea bass liver. European sea bass fed the VO + 0 diet had the highest number of mRNA copies for 16-desaturase (or fads2), fish fed with diet VO + 10 the lowest. Our study adds to the growing body of literature concerning the use of thraustochytrid biomass as a valid alternative to marine-derived raw materials for European sea bass feeds

    IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells

    Get PDF
    The development of agents that can modulate microglial activation has been suggested as one potential strategy for the treatment or prevention of neurodegenerative diseases. Among these agents, resveratrol, with its anti-inflammatory action, has been described to have neuroprotective effects. In this paper we demonstrate that in LPS-stimulated microglia resveratrol pretreatment reduced, in a dose-dependent manner, pro-inflammatory cytokines IL-1ÎČ, TNF-α and IL-6 mRNA expression and increased the release of anti-inflammatory interleukin (IL)-10. Moreover, resveratrol pretreatment up-regulated the phosphorylated forms of JAK1 and STAT3, as well as suppressor of cytokine signaling (SOCS)3 protein expression in LPS activated cells, demonstrating that the JAK-STAT signaling pathway is involved in the anti-inflammatory effect exerted by resveratrol. By supplementing the cultures with an IL-10 neutralizing antibody (IL-10NA) we obtained the opposite effect. Taken together, these data allow us to conclude that the LPS-induced pro-inflammatory response in microglial cells can be markedly reduced by resveratrol, through IL-10 dependent up-regulation of SOCS3, requiring the JAK-STAT signaling pathway

    Formyl Peptide Receptor (FPR)1 Modulation by Resveratrol in an LPS-Induced Neuroinflammatory Animal Model

    Get PDF
    Among therapeutic approaches that have been investigated, targeting of receptors implicated in managing neuroinflammation has been described. One such family of receptors comprises the formyl peptide receptors (FPRs) whose ligands could play a role in host defense. The murine FPR gene family includes at least six members while in humans there are only three. The two most important members are the Fpr1 and Fpr2. Fpr1encodes murine FPR1, which is considered the murine orthologue of human FPR. Resveratrol, a non-flavonoid polyphenol rich in red wine and grapes, apart from its beneficial health effects and anti-inflammatory properties, has been reported to reduce neuroinflammation in different neurodegenerative disease models. Resveratrol anti-inflammatory responses involve the activation of the protein deacetylase sirtuin 1 (SIRT1) gene. In this work we have investigated in an LPS-based murine model of neuroinflammation the role of FPR1, examining not only if this receptor undergoes a reduction of its expression during neuroinflammation, but also whether treatment with resveratrol was able to modulate its expression leading to an amelioration of neuroinflammatory picture in a murine model of neuroinflammation. Results of this work showed that FPR1 together with SIRT1 resulted upregulated by resveratrol treatment and that this increase is associated with an amelioration of the neuroinflammatory picture, as demonstrated by the induction of IL-10 and IL1-RA expression and the downregulation of proinflammatory mediators, such as TNF-α and IL-1ÎČ. The expression and the modulation of FPR1 by resveratrol may be evaluated in order to propose a novel anti-inflammatory and pro-resolving therapeutic approach for the reduction of the detrimental effects associated with neuro-inflammation based neurodegenerative diseases and also as a promising strategy to promote human health by a diet rich in antioxidative bioactive compounds

    New Promising Therapeutic Avenues of Curcumin in Brain Diseases

    Get PDF
    Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called "spice of life", in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer's Diseases, Parkinson's Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders
    • 

    corecore