6,623 research outputs found
Brane classical and quantum cosmology from an effective action
Motivated by the Randall-Sundrum brane-world scenario, we discuss the
classical and quantum dynamics of a (d+1)-dimensional boundary wall between a
pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume
there are quite general -- but not completely arbitrary -- matter fields living
on the boundary ``brane universe'' and its geometry is that of an
Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The effective action
governing the model in the mini-superspace approximation is derived. We find
that the presence of black hole horizons in the bulk gives rise to a complex
action for certain classically allowed brane configurations, but that the
imaginary contribution plays no role in the equations of motion. Classical and
instanton brane trajectories are examined in general and for special cases, and
we find a subset of configuration space that is not allowed at the classical or
semi-classical level; these correspond to spacelike branes carrying tachyonic
matter. The Hamiltonization and Dirac quantization of the model is then
performed for the general case; the latter involves the manipulation of the
Hamiltonian constraint before it is transformed into an operator that
annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt
equation is examined at the semi-classical level, and we consider the possible
localization of the brane universe's wavefunction away from the cosmological
singularity. This is easier to achieve for branes with low density and/or
spherical spatial sections.Comment: Shortened to match version accepted by Phys. Rev. D (unabridged text
found in version 2), 42 pages, 9 figures, Rextex
Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity
It is well-known that Birkhoff's theorem is no longer valid in theories with
more than four dimensions. Thus, in these theories the effective 4-dimensional
picture allows the existence of different possible, non-Schwarzschild,
scenarios for the description of the spacetime outside of a spherical star,
contrary to general relativity in 4D. We investigate the exterior spacetime of
a spherically symmetric star in the context of Kaluza-Klein gravity. We take a
well-known family of static spherically symmetric solutions of the Einstein
equations in an empty five-dimensional universe, and analyze possible stellar
exteriors that are conformal to the metric induced on four-dimensional
hypersurfaces orthogonal to the extra dimension. All these exteriors are
continuously matched with the interior of the star. Then, without making any
assumptions about the interior solution, we prove the following statement: the
condition that in the weak-field limit we recover the usual Newtonian physics
singles out an unique exterior. This exterior is "similar" to Scharzschild
vacuum in the sense that it has no effect on gravitational interactions.
However, it is more realistic because instead of being absolutely empty, it is
consistent with the existence of quantum zero-point fields. We also examine the
question of how would the deviation from the Schwarzschild vacuum exterior
affect the parameters of a neutron star. In the context of a model star of
uniform density, we show that the general relativity upper limit M/R < 4/9 is
significantly increased as we go away from the Schwarzschild vacuum exterior.
We find that, in principle, the compactness limit of a star can be larger than
1/2, without being a black hole. The generality of our approach is also
discussed.Comment: Typos corrected. Accepted for publication in Classical and Quantum
Gravit
Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime
We discuss the question of how the number of dimensions of space and time can
influence the equilibrium configurations of stars. We find that dimensionality
does increase the effect of mass but not the contribution of the pressure,
which is the same in any dimension. In the presence of a (positive)
cosmological constant the condition of hydrostatic equilibrium imposes a lower
limit on mass and matter density. We show how this limit depends on the number
of dimensions and suggest that is more effective in 4D than in
higher dimensions. We obtain a general limit for the degree of compactification
(gravitational potential on the boundary) of perfect fluid stars in
-dimensions. We argue that the effects of gravity are stronger in 4D than in
any other number of dimensions. The generality of the results is also
discussed
Is dark matter an extra-dimensional effect?
We investigate the possibility that the observed behavior of test particles
outside galaxies, which is usually explained by assuming the presence of dark
matter, is the result of the dynamical evolution of particles in higher
dimensional space-times. Hence, dark matter may be a direct consequence of the
presence of an extra force, generated by the presence of extra-dimensions,
which modifies the dynamic law of motion, but does not change the intrinsic
properties of the particles, like, for example, the mass (inertia). We discuss
in some detail several possible particular forms for the extra force, and the
acceleration law of the particles is derived. Therefore, the constancy of the
galactic rotation curves may be considered as an empirical evidence for the
existence of the extra dimensions.Comment: 11 pages, no figures, accepted for publication in MPLA; references
adde
Concentration of atomic hydrogen diffused into silicon in the temperature range 900â1300 °C
Boron-doped Czochralski silicon samples with [B]~1017 cmâ3 have been heated at various temperatures in the range 800â1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 Ă 1018 exp( â 0.95 eV/kT)cmâ3 at the temperatures investigated
Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim
In classical Kaluza-Klein theory, with compactified extra dimensions and
without scalar field, the rest mass as well as the electric charge of test
particles are constants of motion. We show that in the case of a large extra
dimension this is no longer so. We propose the Hamilton-Jacobi formalism,
instead of the geodesic equation, for the study of test particles moving in a
five-dimensional background metric. This formalism has a number of advantages:
(i) it provides a clear and invariant definition of rest mass, without the
ambiguities associated with the choice of the parameters used along the motion
in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the
discussion, and (iii) we avoid the difficulties associated with the "splitting"
of the geodesic equation. For particles moving in a general 5D metric, we show
how the effective rest mass, as measured by an observer in 4D, varies as a
consequence of the large extra dimension. Also, the fifth component of the
momentum changes along the motion. This component can be identified with the
electric charge of test particles. With this interpretation, both the rest mass
and the charge vary along the trajectory. The constant of motion is now a
combination of these quantities. We study the cosmological variations of charge
and rest mass in a five-dimensional bulk metric which is used to embed the
standard k = 0 FRW universes. The time variations in the fine structure
"constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2,
references updated. To appear in General Relativity and Gravitatio
High coercivity induced by mechanical milling in cobalt ferrite powders
In this work we report a study of the magnetic behavior of ferrimagnetic
oxide CoFe2O4 treated by mechanical milling with different grinding balls. The
cobalt ferrite nanoparticles were prepared using a simple hydrothermal method
and annealed at 500oC. The non-milled sample presented coercivity of about 1.9
kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42.
After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and
saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence
ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To
investigate the influence of the microstructure on the magnetic behavior of
these samples, we used X-ray powder diffraction (XPD), transmission electron
microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by
the Williamson-Hall plot was used to estimate the average crystallite size and
strain induced by mechanical milling in the samples
A [SU(6)] FLAVOR MODEL WITHOUT MIRROR FERMIONS
We introduce a three family extension of the Pati-Salam model which is
anomaly-free and contains in a single irreducible representation the known
quarks and leptons without mirror fermions. Assuming that the breaking of the
symmetry admits the implementation of the survival hypothesis, we calculate the
mass scales using the renormalization group equation. Finally we show that the
proton remains perturbatively stable.Comment: Z PHYS. C63, 339 (1994
Accelerating Universe in a Big Bounce Model
Recent observations of Type Ia supernovae provide evidence for the
acceleration of our universe, which leads to the possibility that the universe
is entering an inflationary epoch. We simulate it under a ``big bounce'' model,
which contains a time variable cosmological ``constant'' that is derived from a
higher dimension and manifests itself in 4D spacetime as dark energy. By
properly choosing the two arbitrary functions contained in the model, we obtain
a simple exact solution in which the evolution of the universe is divided into
several stages. Before the big bounce, the universe contracts from a -dominated vacuum, and after the bounce, the universe expands. In the early
time after the bounce, the expansion of the universe is decelerating. In the
late time after the bounce, dark energy (i.e., the variable cosmological
``constant'') overtakes dark matter and baryons, and the expansion enters an
accelerating stage. When time tends to infinity, the contribution of dark
energy tends to two third of the total energy density of the universe,
qualitatively in agreement with observations.Comment: Rextex4, 10 pages, 3 figures, revised and extended, accepted by
Modern Physics Letter
One Step Non SUSY Unification
We show that it is possible to achieve one step gauge coupling unification in
a general class of non supersymmetric models which at low energies have only
the standard particle content and extra Higgs fields doublets. The constraints
are the experimental values of , and
at , and the lower bounds for FCNC and proton decay rates. Specific
example are pointed out.Comment: 10 pages, Latex file,, uses epsf style, Two Postscript figures
included. To appear in Europhysics Letter
- âŠ