6,623 research outputs found

    Brane classical and quantum cosmology from an effective action

    Full text link
    Motivated by the Randall-Sundrum brane-world scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general -- but not completely arbitrary -- matter fields living on the boundary ``brane universe'' and its geometry is that of an Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The effective action governing the model in the mini-superspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semi-classical level; these correspond to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semi-classical level, and we consider the possible localization of the brane universe's wavefunction away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections.Comment: Shortened to match version accepted by Phys. Rev. D (unabridged text found in version 2), 42 pages, 9 figures, Rextex

    Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity

    Get PDF
    It is well-known that Birkhoff's theorem is no longer valid in theories with more than four dimensions. Thus, in these theories the effective 4-dimensional picture allows the existence of different possible, non-Schwarzschild, scenarios for the description of the spacetime outside of a spherical star, contrary to general relativity in 4D. We investigate the exterior spacetime of a spherically symmetric star in the context of Kaluza-Klein gravity. We take a well-known family of static spherically symmetric solutions of the Einstein equations in an empty five-dimensional universe, and analyze possible stellar exteriors that are conformal to the metric induced on four-dimensional hypersurfaces orthogonal to the extra dimension. All these exteriors are continuously matched with the interior of the star. Then, without making any assumptions about the interior solution, we prove the following statement: the condition that in the weak-field limit we recover the usual Newtonian physics singles out an unique exterior. This exterior is "similar" to Scharzschild vacuum in the sense that it has no effect on gravitational interactions. However, it is more realistic because instead of being absolutely empty, it is consistent with the existence of quantum zero-point fields. We also examine the question of how would the deviation from the Schwarzschild vacuum exterior affect the parameters of a neutron star. In the context of a model star of uniform density, we show that the general relativity upper limit M/R < 4/9 is significantly increased as we go away from the Schwarzschild vacuum exterior. We find that, in principle, the compactness limit of a star can be larger than 1/2, without being a black hole. The generality of our approach is also discussed.Comment: Typos corrected. Accepted for publication in Classical and Quantum Gravit

    Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime

    Get PDF
    We discuss the question of how the number of dimensions of space and time can influence the equilibrium configurations of stars. We find that dimensionality does increase the effect of mass but not the contribution of the pressure, which is the same in any dimension. In the presence of a (positive) cosmological constant the condition of hydrostatic equilibrium imposes a lower limit on mass and matter density. We show how this limit depends on the number of dimensions and suggest that Λ>0\Lambda > 0 is more effective in 4D than in higher dimensions. We obtain a general limit for the degree of compactification (gravitational potential on the boundary) of perfect fluid stars in DD-dimensions. We argue that the effects of gravity are stronger in 4D than in any other number of dimensions. The generality of the results is also discussed

    Is dark matter an extra-dimensional effect?

    Get PDF
    We investigate the possibility that the observed behavior of test particles outside galaxies, which is usually explained by assuming the presence of dark matter, is the result of the dynamical evolution of particles in higher dimensional space-times. Hence, dark matter may be a direct consequence of the presence of an extra force, generated by the presence of extra-dimensions, which modifies the dynamic law of motion, but does not change the intrinsic properties of the particles, like, for example, the mass (inertia). We discuss in some detail several possible particular forms for the extra force, and the acceleration law of the particles is derived. Therefore, the constancy of the galactic rotation curves may be considered as an empirical evidence for the existence of the extra dimensions.Comment: 11 pages, no figures, accepted for publication in MPLA; references adde

    Concentration of atomic hydrogen diffused into silicon in the temperature range 900–1300 °C

    Get PDF
    Boron-doped Czochralski silicon samples with [B]~1017 cm−3 have been heated at various temperatures in the range 800–1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 × 1018 exp( − 0.95 eV/kT)cm−3 at the temperatures investigated

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    High coercivity induced by mechanical milling in cobalt ferrite powders

    Get PDF
    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by the Williamson-Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples

    A [SU(6)]4^4 FLAVOR MODEL WITHOUT MIRROR FERMIONS

    Get PDF
    We introduce a three family extension of the Pati-Salam model which is anomaly-free and contains in a single irreducible representation the known quarks and leptons without mirror fermions. Assuming that the breaking of the symmetry admits the implementation of the survival hypothesis, we calculate the mass scales using the renormalization group equation. Finally we show that the proton remains perturbatively stable.Comment: Z PHYS. C63, 339 (1994

    Accelerating Universe in a Big Bounce Model

    Full text link
    Recent observations of Type Ia supernovae provide evidence for the acceleration of our universe, which leads to the possibility that the universe is entering an inflationary epoch. We simulate it under a ``big bounce'' model, which contains a time variable cosmological ``constant'' that is derived from a higher dimension and manifests itself in 4D spacetime as dark energy. By properly choosing the two arbitrary functions contained in the model, we obtain a simple exact solution in which the evolution of the universe is divided into several stages. Before the big bounce, the universe contracts from a Λ\Lambda -dominated vacuum, and after the bounce, the universe expands. In the early time after the bounce, the expansion of the universe is decelerating. In the late time after the bounce, dark energy (i.e., the variable cosmological ``constant'') overtakes dark matter and baryons, and the expansion enters an accelerating stage. When time tends to infinity, the contribution of dark energy tends to two third of the total energy density of the universe, qualitatively in agreement with observations.Comment: Rextex4, 10 pages, 3 figures, revised and extended, accepted by Modern Physics Letter

    One Step Non SUSY Unification

    Get PDF
    We show that it is possible to achieve one step gauge coupling unification in a general class of non supersymmetric models which at low energies have only the standard particle content and extra Higgs fields doublets. The constraints are the experimental values of αem\alpha_{em}, αs\alpha_s and sin⁥2ΞW\sin^2\theta_W at 102GeVs10^2 GeVs, and the lower bounds for FCNC and proton decay rates. Specific example are pointed out.Comment: 10 pages, Latex file,, uses epsf style, Two Postscript figures included. To appear in Europhysics Letter
    • 

    corecore