1,533 research outputs found
Continuum Breakdown Parameter Based on Entropy Generation Rates
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76968/1/AIAA-2003-157-250.pd
Assessment of Entropy Generation Rate as a Predictor of Continuum Breakdown
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77391/1/AIAA-2003-3783-821.pd
Determinants of The Fear of The Pandemic and Its Effect on Voting Behavior Among Young Adult Filipinos in The Next Presidential Election
With COVID-19 severely impacting several aspects of society, the upcoming 2022 Philippine Presidential Elections will be the first to take place under such unique circumstances. This study provides information on how various determinants of fear of COVID-19 affect the voting behavior of young adult Filipinos. This study utilized a survey consisting of five sections composed of sociodemographic questionnaire, Multidimensional Scale of Perceived Social Support, Core Dimensions of Spirituality Questionnaire, Fear of COVID-19 Scale and a question about political participation. The results showed that individuals with a higher level of social support and higher level of spirituality were more likely to conform to the political ideals of their respective environments (i.e. family & religious institutions) and were more likely to participate in the elections, along with individuals with higher levels of fea
Automatic Publication of Open Data from OGC Services: the Use Case of TRAFAIR Project
This work proposes a workflow for the publication of Open Spatial Data. The main contribution of this work is the
automatic generation of metadata extracted from OGC spatial services providing access to feature types and coverages. Besides,
this work adopts the GeoDCAT-AP metadata profile for the description of datasets because it allows for an appropriate
crosswalk between the annotation requirements in the spatial domain and the metadata models accepted in general Open
Data portals. The feasibility of the proposed workflow has been tested within the framework of the TRAFAIR project to publish
monitoring and forecasting air quality data
Low Cerebrospinal Fluid Levels of Melanotransferrin Are Associated With Conversion of Mild Cognitively Impaired Subjects to Alzheimer’s Disease
The disruption of iron metabolism and iron transport proteins have been implicated in the pathogenesis of Alzheimer’s disease (AD). Serum melanotransferrin (MTf), a transferrin homolog capable of reversibly binding iron, has been proposed as a biochemical marker of AD. MTf has also been shown to be elevated in iron-rich reactive microglia near amyloid plaques in AD. We examined the association of CSF MTf to hippocampal volumes and cognitive tests in 86 cognitively normal, 135 mild cognitive impairment (MCI) and 66 AD subjects. CSF was collected at baseline for MTf, Aβ, total-tau and phosphorylated-tau measurements. Serial cognitive testing with ADAS-Cog13, Rey’s auditory visual learning test (RAVLT), mini-mental state examination (MMSE) were performed alongside hippocampal MRI volumetric analysis for up to 10 years after baseline measurements. High levels of baseline CSF MTf were positively associated with baseline hippocampal volume (R2 = 22%, β = 0.202, and p = 0.017) and RAVLT scores (R2 = 7.30%, β = -0.178, and p = 0.043) and negatively correlated to ADAS-Cog13 (R2 = 17.3%, β = 0.247, and p = 0.003) scores in MCI subjects. Interestingly, MCI subjects that converted to AD demonstrated significantly lower levels of CSF MTf (p = 0.020) compared to MCI non-converters at baseline. We suggest the diminished CSF MTf observed in MCI-converters to AD may arise from impaired transport of MTf from blood into the brain tissue/CSF and/or increased MTf export from the CSF into the blood arising from attenuated competition with reduced levels of CSF Aβ. Further investigations are required to determine the source of CSF MTf and how brain MTf is regulated by cellular barriers, Aβ and activated microglia that surround plaques in AD pathophysiology. In conclusion, low CSF MTf may identify those MCI individuals at risk of converting to AD
Flow-Cytometric Phosphoprotein Analysis Reveals Agonist and Temporal Differences in Responses of Murine Hematopoietic Stem/Progenitor Cells
Hematopoietic stem cells (HSCs) are probably the best-studied adult tissue-restricted stem cells. Although methods for flow cytometric detection of phosphoproteins in hematopoeitic progenitors and mature cells are available, analogous protocols for HSC are lacking. We present a robust method to study intracellular signaling in immunophenotypically-defined murine HSC/progenitor cell (HPC)-enriched populations. Using this method, we uncover differences in the response dynamics of several phosphoproteins representative of the Ras/MAP-Kinase(K), PI3K, mTOR and Jak/STAT pathways in HSC/HPCs stimulated by Scf, Thpo, as well as several other important HSC/HPC agonists
Recommended from our members
New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing
Secondary organic aerosols (SOA) are large contributors to fine particle mass loading and number concentration and interact with clouds and radiation. Several processes affect the formation, chemical transformation, and removal of SOA in the atmosphere. For computational efficiency, global models use simplified SOA treatments, which often do not capture the dynamics of SOA formation. Here we test more complex SOA treatments within the global Energy Exascale Earth System Model (E3SM) to investigate how simulated SOA spatial distributions respond to some of the important but uncertain processes affecting SOA formation, removal, and lifetime. We evaluate model predictions with a suite of surface, aircraft, and satellite observations that span the globe and the full troposphere. Simulations indicate that both a strong production (achieved here by multigenerational aging of SOA precursors that includes moderate functionalization) and a strong sink of SOA (especially in the middle upper troposphere, achieved here by adding particle-phase photolysis) are needed to reproduce the vertical distribution of organic aerosol (OA) measured during several aircraft field campaigns; without this sink, the simulated middle upper tropospheric OA is too large. Our results show that variations in SOA chemistry formulations change SOA wet removal lifetime by a factor of 3 due to changes in horizontal and vertical distributions of SOA. In all the SOA chemistry formulations tested here, an efficient chemical sink, that is, particle-phase photolysis, was needed to reproduce the aircraft measurements of OA at high altitudes. Globally, SOA removal rates by photolysis are equal to the wet removal sink, and photolysis decreases SOA lifetimes from 10 to ~3 days. A recent review of multiple field studies found no increase in net OA formation over and downwind biomass burning regions, so we also tested an alternative, empirical SOA treatment that increases primary organic aerosol (POA) emissions near source region and converts POA to SOA with an aging time scale of 1 day. Although this empirical treatment performs surprisingly well in simulating OA loadings near the surface, it overestimates OA loadings in the middle and upper troposphere compared to aircraft measurements, likely due to strong convective transport to high altitudes where wet removal is weak. The default improved model formulation (multigenerational aging with moderate fragmentation and photolysis) performs much better than the empirical treatment in these regions. Differences in SOA treatments greatly affect the SOA direct radiative effect, which ranges from -0.65 (moderate fragmentation and photolysis) to -2 W m-2 (moderate fragmentation without photolysis). Notably, most SOA formulations predict similar global indirect forcing of SOA calculated as the difference in cloud forcing between present-day and preindustrial simulations. © 2020. The Authors
Recommended from our members
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution
The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a
satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A
ton-level liquid scintillator detector will be placed at about 30 m from a core
of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be
measured with sub-percent energy resolution, to provide a reference spectrum
for future reactor neutrino experiments, and to provide a benchmark measurement
to test nuclear databases. A spherical acrylic vessel containing 2.8 ton
gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon
Photomultipliers (SiPMs) of >50% photon detection efficiency with almost full
coverage. The photoelectron yield is about 4500 per MeV, an order higher than
any existing large-scale liquid scintillator detectors. The detector operates
at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The
detector will measure about 2000 reactor antineutrinos per day, and is designed
to be well shielded from cosmogenic backgrounds and ambient radioactivities to
have about 10% background-to-signal ratio. The experiment is expected to start
operation in 2022
- …