132 research outputs found

    TRAIL signals through the ubiquitin ligase MID1 to promote pulmonary fibrosis

    Get PDF
    © 2019 The Author(s). Background: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has previously been demonstrated to play a pro-inflammatory role in allergic airways disease and COPD through the upregulation of the E3 ubiquitin ligase MID1 and the subsequent deactivation of protein phosphatase 2A (PP2A). Methods: Biopsies were taken from eight IPF patients presenting to the Second Affiliated Hospital of Jilin University, China between January 2013 and February 2014 with control samples obtained from resected lung cancers. Serum TRAIL, MID1 protein and PP2A activity in biopsies, and patients' lung function were measured. Wild type and TRAIL deficient Tnfsf10 -/- BALB/c mice were administered bleomycin to induce fibrosis and some groups were treated with the FTY720 analogue AAL(s) to activate PP2A. Mouse fibroblasts were treated with recombinant TRAIL and fibrotic responses were assessed. Results: TRAIL in serum and MID1 protein levels in biopsies from IPF patients were increased compared to controls. MID1 levels were inversely associated while PP2A activity levels correlated with DLco. Tnfsf10 -/- and mice treated with the PP2A activator AAL(s) were largely protected against bleomycin-induced reductions in lung function and fibrotic changes. Addition of recombinant TRAIL to mouse fibroblasts in-vitro increased collagen production which was reversed by PP2A activation with AAL(s). Conclusion: TRAIL signalling through MID1 deactivates PP2A and promotes fibrosis with corresponding lung function decline. This may provide novel therapeutic targets for IPF

    Multicenter study of the natural history and therapeutic responses of patients with chikungunya, focusing on acute and chronic musculoskeletal manifestations - a study protocol from the clinical and applied research in Chikungunya (REPLICK network)

    Get PDF
    BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines

    Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil

    Get PDF
    Dengue is a major public health problem in many tropical regions of the world, including Brazil, where Aedes aegypti is the main vector. We present a household study that combines data on dengue fever seroprevalence, recent dengue infection, and vector density, in three neighborhoods of Rio de Janeiro, Brazil, during its most devastating dengue epidemic to date. This integrated entomological–serological survey showed evidence of silent transmission even during a severe epidemic. Also, past exposure to dengue virus was highly associated with age and living in areas of high movement of individuals and social/commercial activity. No association was observed between household infestation index and risk of dengue infection in these areas. Our findings are discussed in the light of current theories regarding transmission thresholds and relative role of mosquitoes and humans as vectors of dengue viruses

    Crowding: risk factor or protective factor for lower respiratory disease in young children?

    Get PDF
    BACKGROUND: To study the effects of household crowding upon the respiratory health of young children living in the city of São Paulo, Brazil. METHODS: Case-control study with children aged from 2 to 59 months living within the boundaries of the city of São Paulo. Cases were children recruited from 5 public hospitals in central São Paulo with an acute episode of lower respiratory disease. Children were classified into the following diagnostic categories: acute bronchitis, acute bronchiolitis, pneumonia, asthma, post-bronchiolitis wheezing and wheezing of uncertain aetiology. One control, crudely matched to each case with regard to age (<2, 2 years old or more), was selected among healthy children living in the neighborhood of the case. All buildings were surveyed for the presence of environmental contaminants, type of construction and building material. Plans of all homes, including measurements of floor area, height of walls, windows and solar orientation, was performed. Data were analysed using conditional logistic regression. RESULTS: A total of 313 pairs of children were studied. Over 70% of the cases had a primary or an associated diagnosis of a wheezing illness. Compared with controls, cases tended to live in smaller houses with less adequate sewage disposal. Cases and controls were similar with respect to the number of people and the number of children under five living in the household, as well the number of people sharing the child's bedroom. After controlling for potential confounders, no evidence of an association between number of persons sharing the child's bedroom and lower respiratory disease was identified when all cases were compared with their controls. However, when two categories of cases were distinguished (infections, asthma) and each category compared separately with their controls, crowding appeared to be associated with a 60% reduction in the incidence of asthma but with 2 1/2-fold increase in the incidence of lower respiratory tract infections (p = 0.001). CONCLUSION: Our findings suggest that household crowding places young children at risk of acute lower respiratory infection but may protect against asthma. This result is consistent with the hygiene hypothesis

    Pyrosequencing as a tool for better understanding of human microbiomes

    Get PDF
    Next-generation sequencing technologies have revolutionized the analysis of microbial communities in diverse environments, including the human body. This article reviews several aspects of one of these technologies, the pyrosequencing technique, including its principles, applications, and significant contribution to the study of the human microbiome, with especial emphasis on the oral microbiome. The results brought about by pyrosequencing studies have significantly contributed to refining and augmenting the knowledge of the community membership and structure in and on the human body in healthy and diseased conditions. Because most oral infectious diseases are currently regarded as biofilm-related polymicrobial infections, high-throughput sequencing technologies have the potential to disclose specific patterns related to health or disease. Further advances in technology hold the perspective to have important implications in terms of accurate diagnosis and more effective preventive and therapeutic measures for common oral diseases

    Automated Nuclear Analysis of Leishmania major Telomeric Clusters Reveals Changes in Their Organization during the Parasite's Life Cycle

    Get PDF
    Parasite virulence genes are usually associated with telomeres. The clustering of the telomeres, together with their particular spatial distribution in the nucleus of human parasites such as Plasmodium falciparum and Trypanosoma brucei, has been suggested to play a role in facilitating ectopic recombination and in the emergence of new antigenic variants. Leishmania parasites, as well as other trypanosomes, have unusual gene expression characteristics, such as polycistronic and constitutive transcription of protein-coding genes. Leishmania subtelomeric regions are even more unique because unlike these regions in other trypanosomes they are devoid of virulence genes. Given these peculiarities of Leishmania, we sought to investigate how telomeres are organized in the nucleus of Leishmania major parasites at both the human and insect stages of their life cycle. We developed a new automated and precise method for identifying telomere position in the three-dimensional space of the nucleus, and we found that the telomeres are organized in clusters present in similar numbers in both the human and insect stages. While the number of clusters remained the same, their distribution differed between the two stages. The telomeric clusters were found more concentrated near the center of the nucleus in the human stage than in the insect stage suggesting reorganization during the parasite's differentiation process between the two hosts. These data provide the first 3D analysis of Leishmania telomere organization. The possible biological implications of these findings are discussed

    Drug resistance, AmpC-β-lactamase and extended-spectrum β-lactamase-producing Enterobacteriaceae isolated from fish and shrimp

    Get PDF
    ABSTRACT The present study aims to detect the production of extended-spectrum beta-lactamases (ESBL) by enterobacteria isolated from samples of fresh shrimp and fish obtained from the retail trade of the city of Sobral, Ceará State, Brazil. All bacterial isolates were submitted to identification and antimicrobial susceptibility testing using aminopenicillin, beta-lactamase inhibitors, carbapenem, 1st, 2nd, 3rd and 4th generation cephalosporins, and monobactam. Three types of beta-lactamases - ESBL, AmpC and KPC - were investigated. 103 strains were identified, and the most frequent species in shrimp and fish samples was Enterobacter cloacae (n = 54). All the strains were resistant to penicillin and more than 50% of the isolates were resistant to ampicillin and cephalothin. Resistance to three 3rd generation cephalosporins (cefotaxime, ceftriaxone and ceftazidime) and one fourth generation cephalosporin (cefepime) was detected in two isolates of E. cloacae from shrimp samples. Phenotypic detection of AmpC was confirmed in seven strains. The ESBL was detected in two strains of E. cloacae from shrimp samples. No strain showed KPC production. These data can be considered alarming, since food (shrimp and fish) may be carriers of enterobacteria resistant to drugs of clinical interest

    In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

    Get PDF
    Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis
    corecore