10 research outputs found

    An Effective Method to Purify Plasmodium falciparum DNA Directly from Clinical Blood Samples for Whole Genome High-Throughput Sequencing

    Get PDF
    Highly parallel sequencing technologies permit cost-effective whole genome sequencing of hundreds of Plasmodium parasites. The ability to sequence clinical Plasmodium samples, extracted directly from patient blood without a culture step, presents a unique opportunity to sample the diversity of “natural” parasite populations in high resolution clinical and epidemiological studies. A major challenge to sequencing clinical Plasmodium samples is the abundance of human DNA, which may substantially reduce the yield of Plasmodium sequence. We tested a range of human white blood cell (WBC) depletion methods on P. falciparum-infected patient samples in search of a method displaying an optimal balance of WBC-removal efficacy, cost, simplicity, and applicability to low resource settings. In the first of a two-part study, combinations of three different WBC depletion methods were tested on 43 patient blood samples in Mali. A two-step combination of Lymphoprep plus Plasmodipur best fitted our requirements, although moderate variability was observed in human DNA quantity. This approach was further assessed in a larger sample of 76 patients from Burkina Faso. WBC-removal efficacy remained high (<30% human DNA in >70% samples) and lower variation was observed in human DNA quantities. In order to assess the Plasmodium sequence yield at different human DNA proportions, 59 samples with up to 60% human DNA contamination were sequenced on the Illumina Genome Analyzer platform. An average ∼40-fold coverage of the genome was observed per lane for samples with ≤30% human DNA. Even in low resource settings, using a simple two-step combination of Lymphoprep plus Plasmodipur, over 70% of clinical sample preparations should exhibit sufficiently low human DNA quantities to enable ∼40-fold sequence coverage of the P. falciparum genome using a single lane on the Illumina Genome Analyzer platform. This approach should greatly facilitate large-scale clinical and epidemiologic studies of P. falciparum

    Plasmodium vivax Adherence to Placental Glycosaminoglycans

    Get PDF
    BACKGROUND: Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear. METHODOLOGY: The adherence properties of P. vivax infected red blood cells (PvIRBC) were evaluated under static and flow conditions. PRINCIPAL FINDINGS: P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37 °C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39 °C adherence began earlier and peaked at 24 hours. SIGNIFICANCE: Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation

    Delineation of Stage Specific Expression of Plasmodium falciparum EBA-175 by Biologically Functional Region II Monoclonal Antibodies

    Get PDF
    EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains..The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes

    Ultrastructure of the erythrocytic stages of Plasmodium malariae.

    No full text
    This report describes the fine structure of the erythrocytic stages of Plasmodium malariae. Erythrocytic parasites from a naturally acquired human infection and an experimentally infected chimpanzee were morphologically indistinguishable and structurally similar to other primate malarias. New findings included observations of highly structured arrays of merozoite surface coat proteins in the cytoplasm of early schizonts and on the surface of budding merozoites and the presence of knobs in the membranes of Maurer's clefts. Morphological evidence is presented suggesting that proteins are transported between the erythrocyte surface and intracellular parasites via two routes: one associated with Maurer's clefts for transport of membrane-associated knob material and a second associated with caveolae in the host cell membrane for the import or export of host- or parasite-derived substances through the erythrocyte cytoplasm

    Immunity to asexual blood stage malaria and vaccine approaches

    No full text
    The development of a malaria vaccine seems to be a definite possibility despite the fact that even individuals with a life time of endemic exposure do not develop sterile immunity. An effective malaria vaccine would be invaluable in preventing malaria-associated deaths in endemic areas, especially amongst children less than 5 years of age and pregnant women. This review discusses our current understanding of immunity against the asexual blood stage of malaria - the stage that is responsible for the symptoms of the disease - and approaches to the design of an asexual blood stage vaccine
    corecore