26 research outputs found

    Relationship Between Brassiere Cup Size and Shoulder-Neck Pain in Women

    Get PDF
    There are very few reports in regard to relationship between breast size and shoulder-neck pain. The purpose of this study is to examine the correlations among breast size, brassiere cup size, and moment-in-time reporting of shoulderneck pain in a group of adult women. Three hundred thirty nine female volunteers from the hospital staff answered the questionnaire. Breast size, brassiere cup size, and shoulder-neck pain were self-reported by each participant. The relationship among breast size, brassiere cup size and shoulder-neck pain was investigated. Spearman’s test showed no significant relationship between shoulder-neck pain and brassiere cup size. However, after participants were classified into two groups (small brassiere cup size and large brassiere cup size with 219 and 120 participants, respectively), there was a significant positive correlation between shoulder-neck pain and large brassiere cup size (p<0.05). There was no significant relationship between shoulder-neck pain and breast size. In conclusion, large brassiere cup size is an important cause of shoulder-neck pain

    Adenocarcinoma of the third and fourth portion of the duodenum: a case report and review of the literature

    Get PDF
    A 65-year-old woman presented with abdominal pain, weight loss, fatigue, and microcytic anemia. Esophagogastroduodenoscopy, until the second part of duodenum, was normal. Ultrasound and computed tomography demonstrated a solid mass in the distal duodenum. A repeat endoscopy confirmed an ulcerative, intraluminar mass in the third and fourth part of the duodenum. Segmental resection of the third and fourth portion of the duodenum was performed. Histology revealed an adenocarcinoma. On the 4th postoperative day, the patient developed severe acute pancreatitis leading to multiple organ failure and died on the 30th postoperative day

    Understanding animal fears: a comparison of the cognitive vulnerability and harm-looming models

    Get PDF
    Background: The Cognitive Vulnerability Model holds that both clinical and sub-clinical manifestations of animal fears are a result of how an animal is perceived, and can be used to explain both individual differences in fear acquisition and the uneven distribution of fears in the population. This study looked at the association between fear of a number of animals and perceptions of the animals as uncontrollable, unpredictable, dangerous and disgusting. Also assessed were the perceived loomingness, prior familiarity, and negative evaluation of the animals as well as possible conditioning experiences. Methods: 162 first-year University students rated their fear and perceptions of four high-fear and four low-fear animals. Results: Perceptions of the animals as dangerous, disgusting and uncontrollable were significantly associated with fear of both high- and low-fear animals while perceptions of unpredictability were significantly associated with fear of high-fear animals. Conditioning experiences were unrelated to fear of any animals. In multiple regression analyses, loomingness did not account for a significant amount of the variance in fear beyond that accounted for by the cognitive vulnerability variables. However, the vulnerability variables accounted for between 20% and 51% of the variance in all animals fears beyond that accounted for by perceptions of the animals as looming. Perceptions of dangerousness, uncontrollability and unpredictability were highly predictive of the uneven distribution of animal fears. Conclusion: This study provides support for the Cognitive Vulnerability Model of the etiology of specific fears and phobias and brings into question the utility of the harm-looming model in explaining animal fearJason M Armfiel

    Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress

    Get PDF
    In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3) and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs) and cytokine-activated macrophages triggers production of reactive oxygen species (ROS). Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival

    Classification of Types of Stuttering Symptoms Based on Brain Activity

    Get PDF
    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled
    corecore