47 research outputs found

    Current tidal power technologies and their suitability for applications in coastal and marine areas

    Get PDF
    A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth

    The Economic Impact of Eradicating Peste des Petits Ruminants:A Benefit-Cost Analysis

    Get PDF
    Peste des petits ruminants (PPR) is an important cause of mortality and production loss among sheep and goats in the developing world. Despite control efforts in a number of countries, it has continued to spread across Africa and Asia, placing an increasing burden on the livelihoods of livestock keepers and on veterinary resources in affected countries. Given the similarities between PPR and rinderpest, and the lessons learned from the successful global eradication of rinderpest, the eradication of PPR seems appealing, both eliminating an important disease and improving the livelihoods of the poor in developing countries. We conducted a benefit-cost analysis to examine the conomic returns from a proposed programme for the global eradication of PPR. Based on our knowledge and experience, we developed the eradication strategy and estimated its costs. The benefits of the programme were determined from (i) the averted mortality costs, based on an analysis of the literature, (ii) the downstream impact of reduced mortality using a social accounting matrix, and (iii) the avoided control costs based on current levels of vaccination. The results of the benefit-cost analysis suggest strong economic returns from PPR eradication. Based on a 15-year programme with total discounted costs of US2.26billion,weestimatediscountedbenefitsofUS2.26 billion, we estimate discounted benefits of US76.5 billion, yielding a net benefit of US$74.2 billion. This suggests a benefit cost ratio of 33.8, and an internal rate of return (IRR) of 199%. As PPR mortality rates are highly variable in different populations, we conducted a sensitivity analysis based on lower and higher mortality scenarios. All the scenarios examined indicate that investment in PPR eradication would be highly beneficial economically. Furthermore, removing one of the major constraints to small ruminant production would be of considerable benefit to many of the most vulnerable communities in Africa and Asia

    International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene

    No full text
    There is a pressing need for reliable, reproducible and accurate measurements of graphene's properties, through international standards, to facilitate industrial growth. However, trustworthy and verified standards require rigorous metrological studies, determining, quantifying and reducing the sources of measurement uncertainty. Towards this effort, we report the procedure and the results of an international interlaboratory comparison (ILC) study, conducted under Versailles Project on Advanced Materials and Standards. This ILC focusses on the comparability of Raman spectroscopy measurements of chemical vapour deposition (CVD) grown graphene using the same measurement protocol across different institutes and laboratories. With data gathered from 17 participants across academia, industry (including instrument manufacturers) and national metrology institutes, this study investigates the measurement uncertainty contributions from both Raman spectroscopy measurements and data analysis procedures, as well as provides solutions for improved accuracy and precision. While many of the reported Raman metrics were relatively consistent, significant and meaningful outliers occurred due to differences in the instruments and data analysis. These variations resulted in inconsistent reports of peak intensity ratios, peak widths and the coverage of graphene. Due to a lack of relative intensity calibration, the relative difference reported in the 2D- and G peak intensity ratios (I-2D/I-G) was up to 200%. It was also shown that the standard deviation for Gamma(2D) values reported by different software packages, was 15 x larger for Lorentzian fit functions than for pseudo-Voigt functions. This study has shown that by adopting a relative intensity calibration and consistent peak fitting and data analysis methodologies, these large, and previously unquantified, variations can be significantly reduced, allowing more reproducible and comparable measurements for the graphene community, supporting fundamental research through to the growing graphene industry worldwide. This project and its findings directly underpin the development of the ISO/IEC standard 'DTS 21356-2-Nanotechnologies-Structural Characterisation of CVD-grown Graphene'
    corecore