17 research outputs found
Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications
The increasing demand for high-performance and quality polymer composite materials has led to international research effort on pursuing advanced tooling design and new processing technologies to satisfy the highly specialized requirements of composite components used in the aerospace industry. This paper reports the problems in the fabrication of advanced composite materials identified through literature survey, and an investigation carried out by the authors about the composite manufacturing status in China’s aerospace industry. Current tooling design technologies use tooling materials which cannot match the thermal expansion coefficient of composite parts, and hardly consider the calibration of tooling surface. Current autoclave curing technologies cannot ensure high accuracy of large composite materials because of the wide range of temperature gradients and long curing cycles. It has been identified that microwave curing has the potential to solve those problems. The proposed technologies for the manufacturing of fiber-reinforced polymer composite materials include the design of tooling using anisotropy composite materials with characteristics for compensating part deformation during forming process, and vacuum-pressure microwave curing technology. Those technologies are mainly for ensuring the high accuracy of anisotropic composite parts in aerospace applications with large size (both in length and thickness) and complex shapes. Experiments have been carried out in this on-going research project and the results have been verified with engineering applications in one of the project collaborating companies
Mechanical behaviours of pumpkin peel under compression test
Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N
A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method
© 2017, Springer-Verlag GmbH Germany. Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification
Chaos or complex systems? Identifying factors influencing the success of international and NESB graduate research students in engineering and information technology fields
The paper details the results of the first phase of a larger ALTC project into the sociocultural factors that influence the supervision of higher degrees research (HDR) engineering students at the University of Western Australia, Curtain University, and Queensland University of Technology (QUT). A quantitative analysis was performed on the results from an online survey that was administered to 179 QUT engineering students. Research and innovation are central to the development of Australia’s competitiveness in a global economy. An analysis of the Higher Degrees Research (HDR) data from Queensland University of Technology (QUT) and the University of Western Australia (UWA) as part of the pilot project indicates that this is a growing problem in all disciplines, and is especially significant in Engineering and Information Technology disciplines. As the number of international students entering HDR study in Australia continues to grow, the issue of the identification of factors influencing HDR success should be seen to be of critical importance