8,383 research outputs found
The impact of chronic pain on the quality of life of patients attending primary healthcare clinics
Objectives: The objective was to study the nature and magnitude of the impact of pain on the quality of life of patients with chronic pain.Design: This was a descriptive, cross-sectional quantitative study.Setting and subjects: One thousand and sixty-six adult patients were screened between October and December 2010 in four primary healthcare clinics in south-west Tshwane.Outcome measures: Patients reporting persistent pain for six months or longer were considered to be chronic pain patients (437, 41%), and were interviewed with regard to the impact of chronic pain on their quality of life using the Wisconsin Brief Pain Questionnaire.Results: Four hundred and nineteen patients (95.9%, 95% confidence interval (CI): 93.6-97.6) of chronic pain patients reported that chronic pain impacted on their quality of life and functioning. Sixty-eight per cent of patients (95% CI: 63.3-72.4) reported being severely adversely affected by chronic pain. Pain had a severe impact on sleep quality in 39.2% patients, walking ability (37.4%), routine housework (33.8%), mood (20.1%), interpersonal relationships (15.3%) and enjoyment of life (16.3%). The more intense the experience of severe pain was, the greater the impact of chronic pain on everyday life (p-value < 0.001). Equally, patients with better pain relief enjoyed a better quality of life (p-value < 0.001).Conclusion: A substantial proportion of patients attending primary healthcare clinics experience chronic pain which impacts on their lives in multiple and significant ways
A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs
A number of novel programming languages and libraries have been proposed that
offer simpler-to-use models of concurrency than threads. It is challenging,
however, to devise execution models that successfully realise their
abstractions without forfeiting performance or introducing unintended
behaviours. This is exemplified by SCOOP---a concurrent object-oriented
message-passing language---which has seen multiple semantics proposed and
implemented over its evolution. We propose a "semantics workbench" with fully
and semi-automatic tools for SCOOP, that can be used to analyse and compare
programs with respect to different execution models. We demonstrate its use in
checking the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the principal
execution models of the language. Our workbench is based on a modular and
parameterisable graph transformation semantics implemented in the GROOVE tool.
We discuss how graph transformations are leveraged to atomically model
intricate language abstractions, and how the visual yet algebraic nature of the
model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear
The Bulk Channel in Thermal Gauge Theories
We investigate the thermal correlator of the trace of the energy-momentum
tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral
function in that channel, whose low-frequency part determines the bulk
viscosity. We focus on the thermal modification of the spectral function,
. Using the operator-product expansion we give
the high-frequency behavior of this difference in terms of thermodynamic
potentials. We take into account the presence of an exact delta function
located at the origin, which had been missed in previous analyses. We then
combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean
correlator to determine the intervals of frequency where the spectral density
is enhanced or depleted by thermal effects. We find evidence that the thermal
spectral density is non-zero for frequencies below the scalar glueball mass
and is significantly depleted for .Comment: (1+25) pages, 6 figure
Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion
© Author(s) 2015. Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires
Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates
© 2016, Nature Publishing Group. All rights reserved. Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon
Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory
Inspired by recent lattice measurements, we determine the short-distance (a
> omega >> pi T) asymptotics
of scalar (trace anomaly) and pseudoscalar (topological charge density)
correlators at 2-loop order in hot Yang-Mills theory. The results are expressed
in the form of an Operator Product Expansion. We confirm and refine the
determination of a number of Wilson coefficients; however some discrepancies
with recent literature are detected as well, and employing the correct values
might help, on the qualitative level, to understand some of the features
observed in the lattice measurements. On the other hand, the Wilson
coefficients show slow convergence and it appears uncertain whether this
approach can lead to quantitative comparisons with lattice data. Nevertheless,
as we outline, our general results might serve as theoretical starting points
for a number of perhaps phenomenologically more successful lines of
investigation.Comment: 27 pages. v2: minor improvements, published versio
Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas
Neglected tropical diseases (NTDs) have\ud
been recently identified as significant public\ud
health problems in Texas and elsewhere in\ud
the American South. A one-day forum on the\ud
landscape of research and development and\ud
the hidden burden of NTDs in Texas\ud
explored the next steps to coordinate advocacy,\ud
public health, and research into a\ud
cogent health policy framework for the\ud
American NTDs. It also highlighted how\ud
U.S.-funded global health research can serve\ud
to combat these health disparities in the\ud
United States, in addition to benefiting\ud
communities abroad
Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring
We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fixed the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large
Predictive feedback control and Fitts' law
Fitts’ law is a well established empirical formula, known for encapsulating the “speed-accuracy trade-off”. For discrete, manual movements from a starting location to a target, Fitts’ law relates movement duration to the distance moved and target size. The widespread empirical success of the formula is suggestive of underlying principles of human movement control. There have been previous attempts to relate Fitts’ law to engineering-type control hypotheses and it has been shown that the law is exactly consistent with the closed-loop step-response of a time-delayed, first-order system. Assuming only the operation of closed-loop feedback, either continuous or intermittent, this paper asks whether such feedback should be predictive or not predictive to be consistent with Fitts law. Since Fitts’ law is equivalent to a time delay separated from a first-order system, known control theory implies that the controller must be predictive. A predictive controller moves the time-delay outside the feedback loop such that the closed-loop response can be separated into a time delay and rational function whereas a non- predictive controller retains a state delay within feedback loop which is not consistent with Fitts’ law. Using sufficient parameters, a high-order non-predictive controller could approximately reproduce Fitts’ law. However, such high-order, “non-parametric” controllers are essentially empirical in nature, without physical meaning, and therefore are conceptually inferior to the predictive controller. It is a new insight that using closed-loop feedback, prediction is required to physically explain Fitts’ law. The implication is that prediction is an inherent part of the “speed-accuracy trade-off”
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase
Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al
- …