34 research outputs found

    Roles of MAPK and Spindle Assembly Checkpoint in Spontaneous Activation and MIII Arrest of Rat Oocytes

    Get PDF
    Rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct, but the SA is abortive with oocytes being arrested in metaphase III (MIII) instead of forming pronuclei. This study was designed to investigate the mechanism causing SA and MIII arrest. Whereas few oocytes collected from SD rats at 13 h after hCG injection that showed 100% of mitogen-activated protein kinase (MAPK) activities activated spontaneously, all oocytes recovered 19 h post hCG with MAPK decreased to below 75% underwent SA during in vitro culture. During SA, MAPK first declined to below 45% and then increased again to 80%; the maturation-promoting factor (MPF) activity fluctuated similarly but always began to change ahead of the MAPK activity. In SA oocytes with 75% of MAPK activities, microtubules were disturbed with irregularly pulled chromosomes dispersed over the spindle and the spindle assembly checkpoint (SAC) was activated. When MAPK decreased to 45%, the spindle disintegrated and chromosomes surrounded by microtubules were scattered in the ooplasm. SA oocytes entered MIII and formed several spindle-like structures by 6 h of culture when the MAPK activity re-increased to above 80%. While SA oocytes showed one Ca2+ rise, Sr2+-activated oocytes showed several. Together, the results suggested that SA stimuli triggered SA in rat oocytes by inducing a premature MAPK inactivation, which led to disturbance of spindle microtubules. The microtubule disturbance impaired pulling of chromosomes to the spindle poles, caused spindle disintegration and activated SAC. The increased SAC activity reactivated MPF and thus MAPK, leading to MIII arrest

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition

    Get PDF
    Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde
    corecore