503 research outputs found

    On the stability of critical chemotactic aggregation

    Full text link
    We consider the two dimensional parabolic-elliptic Patlak-Keller-Segel model of chemotactic aggregation for radially symmetric initial data. We show the existence of a stable mechanism of singularity formation and obtain a complete description of the associated aggregation process.Comment: 80 page

    Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping

    Get PDF
    We consider the model of a quantum harmonic oscillator governed by a Lindblad master equation where the typical drive and loss channels are multi-photon processes instead of single-photon ones; this implies a dissipation operator of order 2k with integer k>1 for a k-photon process. We prove that the corresponding PDE makes the state converge, for large time, to an invariant subspace spanned by a set of k selected basis vectors; the latter physically correspond to so-called coherent states with the same amplitude and uniformly distributed phases. We also show that this convergence features a finite set of bounded invariant functionals of the state (physical observables), such that the final state in the invariant subspace can be directly predicted from the initial state. The proof includes the full arguments towards the well-posedness of the corresponding dynamics in proper Banach spaces of Hermitian trace-class operators equipped with adapted nuclear norms. It relies on the Hille-Yosida theorem and Lyapunov convergence analysis.Comment: 20 pages, submitte

    Adiabatic elimination for open quantum systems with effective Lindblad master equations

    Get PDF
    We consider an open quantum system described by a Lindblad-type master equation with two times-scales. The fast time-scale is strongly dissipative and drives the system towards a low-dimensional decoherence-free space. To perform the adiabatic elimination of this fast relaxation, we propose a geometric asymptotic expansion based on the small positive parameter describing the time-scale separation. This expansion exploits geometric singular perturbation theory and center-manifold techniques. We conjecture that, at any order, it provides an effective slow Lindblad master equation and a completely positive parameterization of the slow invariant sub-manifold associated to the low-dimensional decoherence-free space. By preserving complete positivity and trace, two important structural properties attached to open quantum dynamics, we obtain a reduced-order model that directly conveys a physical interpretation since it relies on effective Lindbladian descriptions of the slow evolution. At the first order, we derive simple formulae for the effective Lindblad master equation. For a specific type of fast dissipation, we show how any Hamiltonian perturbation yields Lindbladian second-order corrections to the first-order slow evolution governed by the Zeno-Hamiltonian. These results are illustrated on a composite system made of a strongly dissipative harmonic oscillator, the ancilla, weakly coupled to another quantum system.Comment: 9 pages, one figur

    Accelerated Spectral Clustering Using Graph Filtering Of Random Signals

    Get PDF
    We build upon recent advances in graph signal processing to propose a faster spectral clustering algorithm. Indeed, classical spectral clustering is based on the computation of the first k eigenvectors of the similarity matrix' Laplacian, whose computation cost, even for sparse matrices, becomes prohibitive for large datasets. We show that we can estimate the spectral clustering distance matrix without computing these eigenvectors: by graph filtering random signals. Also, we take advantage of the stochasticity of these random vectors to estimate the number of clusters k. We compare our method to classical spectral clustering on synthetic data, and show that it reaches equal performance while being faster by a factor at least two for large datasets

    Compressive Spectral Clustering

    Get PDF
    Spectral clustering has become a popular technique due to its high performance in many contexts. It comprises three main steps: create a similarity graph between N objects to cluster, compute the first k eigenvectors of its Laplacian matrix to define a feature vector for each object, and run k-means on these features to separate objects into k classes. Each of these three steps becomes computationally intensive for large N and/or k. We propose to speed up the last two steps based on recent results in the emerging field of graph signal processing: graph filtering of random signals, and random sampling of bandlimited graph signals. We prove that our method, with a gain in computation time that can reach several orders of magnitude, is in fact an approximation of spectral clustering, for which we are able to control the error. We test the performance of our method on artificial and real-world network data.Comment: 12 pages, 2 figure

    Quantitative Robustness Analysis of Flat Timed Automata

    No full text
    Whereas formal verification of timed systems has become a very active field of research, the idealized mathematical semantics of timed automata cannot be faithfully implemented. Recently, several works have studied a parametric semantics of timed automata related to implementability: if the specification is met for some positive value of the parameter, then there exists a correct implementation. In addition, the value of the parameter gives lower bounds on sufficient resources for the implementation. In this work, we present a symbolic algorithm for the computation of the parametric reachability set under this semantics for flat timed automata. As a consequence, we can compute the largest value of the parameter for a timed automaton to be safe

    The Authorization Policy Existence Problem

    Get PDF
    International audienceConstraints such as separation-of-duty are widely used to specify requirements that supplement basic authorization policies. However, the existence of constraints (and authorization policies) may mean that a user is unable to fulïŹll her/his organizational duties because access to resources is denied. In short, there is a tension between the need to protect resources (using policies and constraints) and the availability of resources. Recent work on workïŹ‚ow satisïŹability and resiliency in access control asks whether this tension compromises the ability of an organization to achieve its objectives. In this paper, we develop a new method of specifying constraints which subsumes much related work and allows a wider range of constraints to be speciïŹed. The use of such constraints leads naturally to a range of questions related to“policy existence”, where a positive answer means that an organization’s objectives can be realized. We provide an overview of our results establishing that some policy existence questions, notably for those instances that are restricted to user-independent constraints, are ïŹxed-parameter tractable

    Fluid-Structure Energy Transfer of a Tensioned Beam Subject to Vortex-Induced Vibrations in Shear Flow

    Get PDF
    The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lockin region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations. Topics: Energy transformation, Fluids, Shear flow, Vortex-induced vibrationBP America Production CompanyBP-MIT Major Projects Progra
    • 

    corecore