283 research outputs found

    Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation

    Get PDF
    Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-a)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-α, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-α, IL-1ß, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-α and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-α, IL-1ß and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria

    Tomato fruits: a good target for iodine biofortification

    Get PDF
    Iodine is a trace element that is fundamental for human health: its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however, plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition. A greenhouse pot experiment was carried out to evaluate the possibility of biofortifying tomato fruits with iodine. Increasing concentrations of iodine supplied as KI or KIO3 were administered to plants as root treatments and the iodine accumulation in fruits was measured. The influences of the soil organic matter content or the nitrate level in the nutritive solution were analyzed. Finally, yield and qualitative properties of the biofortified tomatoes were considered, as well as the possible influence of fruit storage and processing on the iodine content. Results showed that the use of both the iodized salts induced a significant increase in the fruit’s iodine content in doses that did not affect plant growth and development. The final levels ranged from a few mg up to 10 mg iodine kg-1 fruit fresh weight and are more than adequate for a biofortification program, since 150 μg iodine per day is the recommended dietary allowance for adults. In general, the iodine treatments scarcely affected fruit appearance and quality, even with the highest concentrations applied. In contrast, the use of KI in plants fertilized with low doses of nitrate induced moderate phytotoxicity symptoms. Organic matter-rich soils improved the plant’s health and production, with only mild reductions in iodine stored in the fruits. Finally, a short period of storage at room temperature or a 30-min boiling treatment did not reduce the iodine content in the fruits, if the peel was maintained. All these results suggest that tomato is a particularly suitable crop for iodine biofortification programs

    A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis

    Get PDF
    The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO(2) was significantly reduced, but fermentative H(2) production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth

    Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis

    Get PDF
    The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression

    Negative MR4·0 chronic myeloid leukaemia and its possible implications for treatment-free remission

    Get PDF
    © 2019 British Society for Haematology and John Wiley & Sons Ltd.ABL1 tyrosine kinase inhibitors (TKI) have dramatically improved the outcome for chronic myeloid leukaemia (CML) patients, resulting in a life expectancy that approaches that of the general population. Nevertheless, lifelong TKI therapy may have consequences, including chronic adverse events that can substantially impact patients’ quality of life, adherence to therapy and treatment success. Recently, several clinical discontinuation trials have demonstrated that 40–60% of chronic phase CML patients (CP-CML) who have achieved a stable deep molecular response (DMR) can stop therapy without relapsing (Breccia & Foà, 2018). Laboratory recommendations for scoring DMR were previously defined as MR4·0 [either detectable disease ⩽0·01% BCR-ABLIS (MR4·0 positive) or undetectable disease in cDNA with 10 000–31 999 ABL1 transcripts or 24 000–76 999 GUSB transcripts (MR4·0 negative)], MR4·5 [either detectable disease ⩽0·0032% BCR-ABLIS (MR4·5 positive) or undetectable disease in cDNA with 32 000–99 999 ABL1 transcripts or 77 000–239 999 GUSB transcripts (MR4·5 negative)], and MR5·0 [either detectable disease ⩽0·001% BCR-ABLIS (MR5·0 positive) or undetectable disease in cDNA with ⩾100 000 ABL1 transcripts or ⩾240 000 GUSB transcripts (MR5·0 negative)] (Cross et al, 2015).info:eu-repo/semantics/publishedVersio

    Geohazard features of the Tyrrhenian Calabria

    Get PDF
    This paper accompanies the Maps of Geohazard features of the Cilento and the Calabro-Tyrrhenian continental margin in the southern Tyrrhenian Sea (Italy). The main geohazard-related features were derived from extensive seafloor mapping through the collection of high-resolution multibeam data acquired during several oceanographic cruises. They encompass many fluids seepage features, fault scarps, landslides scars, gullies, channels, and canyons. Hazards related to coastal landslides and shelf-indenting canyons are very high in these sectors (especially in southern Calabria) due to active seismicity coupled with rapid uplift, high sedimentation rates and narrow or totally absent continental shelf, thus promoting a direct connection between steep slopes and coastal areas. In this setting, mass-wasting features can directly impact coastal or submarine infrastructures or indirectly create local tsunami waves, as observed in historical times. Moreover, this physiographic setting of the margin facilitates the transfer of marine litter toward deep-sea areas

    The serological prevalence of SARS-CoV-2 infection in patients with chronic myeloid leukemia is similar to that in the general population

    Get PDF
    Background: Patients with hematological malignancies are at an increased risk of SARS-CoV-2 disease (COVID-19) and adverse outcome. However, a low mortality rate has been reported in patients with chronic myeloid leukemia (CML). Preclinical evidence suggests that tyrosine kinase inhibitors (TKIs) may have a protective role against severe COVID-19. Methods: We conducted a cross-sectional study of 564 consecutive patients with CML who were tested for anti-SARS-CoV-2 IgG/IgM antibodies at their first outpatient visit between May and early November 2020 in five hematologic centers representative of three Italian regions. Results: The estimated serological prevalence of SARS-CoV-2 infection in patients with CML after the first pandemic wave was similar to that in the general population (about 2%), both at national and regional levels. CML patients with positive anti-SARS-CoV-2\ua0serology were more frequently male (p\ua0=\ua00.027) and active workers (p\ua0=\ua00.012), while there was no significant association with TKI treatment type. Only 3 out of 11 IgG-positive patients had previously received a molecular diagnosis of COVID-19, while the remainders were asymptomatic or with mild symptoms. Conclusions: Our data confirm that the course of SARS-CoV-2 infection in patients with CML is generally mild and reassure about the safety of continuing TKIs during the COVID-19 pandemic. Furthermore, we suggest that patients with CML succeed to mount an antibody response after exposure to SARS-CoV-2, similar to the general population
    • …
    corecore