240 research outputs found
A proposed search for new light bosons using a table-top neutron Ramsey apparatus
If a new light boson existed, it would mediate a new force between ordinary
fermions, like neutrons. In general such a new force is described by the
Compton wavelength of the associated boson and a set of
dimensionless coupling constants. For light boson masses of about eV,
is of the order millimeters. Here, we propose a table-top particle
physics experiment which provides the possibility to set limits on the strength
of the coupling constants of light bosons with spin-velocity coupling. It
utilises Ramsey's technique of separated oscillating fields to measure the
pseudo-magnetic effect on neutron spins passing by a massive sample.Comment: proceedings of the ECNS 2011 conference, published in Jour of Phys.
Conf. Serie
Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins
We report on a polarized-neutron Laue diffraction experiment on a single
crystal of neodynium doped lanthanum magnesium nitrate hydrate containing
polarized proton spins. By using dynamic nuclear polarization to polarize the
proton spins, we demonstrate that the intensities of the Bragg peaks can be
enhanced or diminished significantly, whilst the incoherent background, due to
proton spin disorder, is reduced. It follows that the method offers unique
possibilities to tune continuously the contrast of the Bragg reflections and
thereby represents a new tool for increasing substantially the signal-to-noise
ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure
muCool: A novel low-energy muon beam for future precision experiments
Experiments with muons () and muonium atoms () offer
several promising possibilities for testing fundamental symmetries. Examples of
such experiments include search for muon electric dipole moment, measurement of
muon and experiments with muonium from laser spectroscopy to gravity
experiments. These experiments require high quality muon beams with small
transverse size and high intensity at low energy.
At the Paul Scherrer Institute, Switzerland, we are developing a novel device
that reduces the phase space of a standard beam by a factor of
with efficiency. The phase space compression is achieved by
stopping a standard beam in a cryogenic helium gas. The stopped
are manipulated into a small spot with complex electric and magnetic
fields in combination with gas density gradients. From here, the muons are
extracted into the vacuum and into a field-free region. Various aspects of this
compression scheme have been demonstrated. In this article the current status
will be reported.Comment: 8 pages, 5 figures, TCP 2018 conference proceeding
Lowest Q^2 Measurement of the gamma*p -> Delta Reaction: Probing the Pionic Contribution
To determine nonspherical angular momentum amplitudes in hadrons at long
ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the
Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the
A1 Collaboration at MAMI. The results for the dominant transition magnetic
dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are:
M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model})
(10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst}
+/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/-
0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of
constituent quark models but are in reasonable agreement with lattice
calculations with non-linear (chiral) pion mass extrapolations, with chiral
effective field theory, and with dynamical models with pion cloud effects.
These results confirm the dominance, and general Q^2 variation, of the pionic
contribution at large distances.Comment: 6 pages, 3 figures, 1 tabl
Revised experimental upper limit on the electric dipole moment of the neutron
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons; an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of dn=−0.21±1.82×10−26 e cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of 3.0×10−26 e cm (90% C.L.) or 3.6×10−26 e cm (95% C.L.)
Measurements of the \gamma * p --> \Delta(1232) reaction at low Q2
We report new p measurements in the
resonance at the low momentum transfer region utilizing the
magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud
dynamics are predicted to be dominant and appreciably changing in this region
while the momentum transfer is sufficiently low to be able to test chiral
effective calculations. The results disagree with predictions of constituent
quark models and are in reasonable agreement with dynamical calculations with
pion cloud effects, chiral effective field theory and lattice calculations. The
reported measurements suggest that improvement is required to the theoretical
calculations and provide valuable input that will allow their refinements
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment
were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an
unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}
Gravitational depolarization of ultracold neutrons: comparison with data
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data
A highly stable atomic vector magnetometer based on free spin precession
We present a magnetometer based on optically pumped Cs atoms that measures
the magnitude and direction of a 1 T magnetic field. Multiple circularly
polarized laser beams were used to probe the free spin precession of the Cs
atoms. The design was optimized for long-time stability and achieves a scalar
resolution better than 300 fT for integration times ranging from 80 ms to 1000
s. The best scalar resolution of less than 80 fT was reached with integration
times of 1.6 to 6 s. We were able to measure the magnetic field direction with
a resolution better than 10 rad for integration times from 10 s up to 2000
s
Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins
Physics at the Planck scale could be revealed by looking for tiny violations
of fundamental symmetries in low energy experiments. In 2008, a sensitive test
of the isotropy of the Universe using has been performed with stored ultracold
neutrons (UCN), this is the first clock-comparison experiment performed with
free neutrons. During several days we monitored the Larmor frequency of neutron
spins in a weak magnetic field using the Ramsey resonance technique. An
non-zero cosmic axial field, violating rotational symmetry, would induce a
daily variation of the precession frequency. Our null result constitutes one of
the most stringent tests of Lorentz invariance to date.Comment: proceedings of the PNCMI2010 conferenc
- …
