4,027 research outputs found
Emitter-site selective photoelectron circular dichroism of trifluoromethyloxirane
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane,
C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate
the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s
electronic orbitals, which are localized on different molecular sites. The
respective dichroic and angular distribution parameters
are measured at the photoelectron kinetic energies from 1 to 16 eV by using
variably polarized synchrotron radiation and velocity map imaging spectroscopy.
The present experimental results are in good agreement with the outcome of ab
initio electronic structure calculations. We report a sizable chiral asymmetry
of up to about 9% for the K-shell photoionization of oxygen atom.
For the individual fluorine atoms, the present calculations predict asymmetries
of similar size. However, being averaged over all fluorine atoms, it drops down
to about 2%, as also observed in the present experiment. Our study demonstrates
a strong emitter- and site-sensitivity of PECD in the one-photon inner-shell
ionization of this chiral molecule
Regular Poisson structures on massive non-rotating BTZ black holes
We revisit the non-rotating massive BTZ black hole within a pseudo-Riemannian
symmetric space context. Using classical symmetric space techniques we find
that every such space intrinsically carries a regular Poisson structure whose
symplectic leaves are para-hermitian symmetric surfaces. We also obtain a
global expression of the metric yielding a dynamical description of the black
hole from its initial to its final singularity.Comment: LaTex, 18 pages, 3 figures, version published in Nucl. Phys.
Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI
B[e] stars are hot stars surrounded by circumstellar gas and dust responsible
for the presence of emission lines and IR-excess in their spectra. How dust can
be formed in this highly illuminated and diluted environment remains an open
issue. HD 62623 is one of the very few A-type supergiants showing the B[e]
phenomenon. We obtained nine calibrated visibility measurements using the
VLTI/MIDI instrument in SCI-PHOT mode and PRISM spectral dispersion mode with
projected baselines ranging from 13 to 71 m and with various position angles.
We used geometrical models and physical modeling with a radiative transfer code
to analyze these data. The dusty circumstellar environment of HD 62623 is
partially resolved by the VLTI/MIDI even with the shortest baselines. The
environment is flattened and can be separated into two components: a compact
one whose extension grows from 17 mas at 8 microns to 30 mas at 9.6 microns and
stays almost constant up to 13 microns, and a more extended one that is
over-resolved even with the shortest baselines. Using the radiative transfer
code MC3D, we managed to model HD 62623's circumstellar environment as a dusty
disk with an inner radius of 3.85+-0.6 AU, an inclination angle of 60+-10 deg,
and a mass of 2x10^-7Mo. It is the first time that the dusty disk inner rim of
a supergiant star exhibiting the B[e] phenomenon is significantly constrained.
The inner gaseous envelope likely contributes up to 20% to the total N band
flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar
wind deceleration by the companion's gravitational effects remains the most
probable case since the bi-stability mechanism does not seem to be efficient
for this star.Comment: 13 pages, 11 figures. A&A accepted pape
Emission of photon echoes in a strongly scattering medium
We observe the two- and three-pulse photon echo emission from a scattering
powder, obtained by grinding a Pr:YSiO rare earth doped single
crystal. We show that the collective emission is coherently constructed over
several grains. A well defined atomic coherence can therefore be created
between randomly placed particles. Observation of photon echo on powders as
opposed to bulk materials opens the way to faster material development. More
generally, time-domain resonant four-wave mixing offers an attractive approach
to investigate coherent propagation in scattering media
Spontaneous Magnetization and Electron Momentum Density in 3D Quantum Dots
We discuss an exactly solvable model Hamiltonian for describing the
interacting electron gas in a quantum dot. Results for a spherical square well
confining potential are presented. The ground state is found to exhibit
striking oscillations in spin polarization with dot radius at a fixed electron
density. These oscillations are shown to induce characteristic signatures in
the momentum density of the electron gas, providing a novel route for direct
experimental observation of the dot magnetization via spectroscopies sensitive
to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure
Novel Scaling Behavior for the Multiplicity Distribution under Second-Order Quark-Hadron Phase Transition
Deviation of the multiplicity distribution in small bin from its
Poisson counterpart is studied within the Ginzburg-Landau description for
second-order quark-hadron phase transition. Dynamical factor for the distribution and ratio are defined, and
novel scaling behaviors between are found which can be used to detect the
formation of quark-gluon plasma. The study of and is also very
interesting for other multiparticle production processes without phase
transition.Comment: 4 pages in revtex, 5 figures in eps format, will be appeared in Phys.
Rev.
Existence of weak solutions for the generalized Navier-Stokes equations with damping
In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.MCTES, Portugal [SFRH/BSAB/1058/2010]; FCT, Portugal [PTDC/MAT/110613/2010]info:eu-repo/semantics/publishedVersio
QCD and hybrid NBD on oscillating moments of multiplicity distributions in lepton- and hadron-initiated reactions
QCD predictions for moments of multiplicity distributions are compared with
experimental data on e+e- collisions and their two-NBD fits. Moments of the
multiplicity distribution in a two-NBD model for 1.8 TeV pp collisions are
considered. Three-NBD model predictions and fits for pp at LHC energies are
also discussed. Analytic expressions for moments of hybrid NBD are derived and
used to get insight into jet parameters and multicomponent structure of the
processes. Interpretation of observed correlations is proposed.Comment: 8 pages, no figures, Phys. Lett.
QCD and models on multiplicities in and interactions
A brief survey of theoretical approaches to description of multiplicity
distributions in high energy processes is given. It is argued that the
multicomponent nature of these processes leads to some peculiar characteristics
observed experimentally. Predictions for LHC energies are presented. It is
shown that similarity of the energy dependence of average multiplicities in
different reactions is not enough alone to suggest the universal mechanism of
particle production in strongly-interacting systems. Other characteristics of
multiplicity distributions depend on the nature of colliding partners.Comment: 16 pages, 11 figures, Phys. Atom. Nuc
- …
