181 research outputs found

    Metabolic flexibility as a major predictor of spatial distribution in microbial communities

    Get PDF
    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec® or Glivec®), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated

    Ontogeny of juvenile freshwater pearl mussels, Margaritifera margaritifera (Bivalvia: Margaritiferidae).

    Get PDF
    The gills of juvenile freshwater bivalves undergo a complex morphogenesis that may correlate with changes in feeding ecology, but ontogenic studies on juvenile mussels are rare. Scanning electron microscopy was used to examine the ultrastructure and ontogeny of 117 juvenile freshwater pearl mussels (Margaritifera margaritifera) ranging in age from 1–44 months and length from 0.49–8.90 mm. Three stages of gill development are described. In Stage 1 (5–9 inner demibranch filaments), only unreflected inner demibranch filaments were present. In Stage 2 (9–17 inner demibranch filaments), inner demibranch filaments began to reflect when shell length exceeded 1.13 mm, at 13–16 months old. Reflection began in medial filaments and then proceeded anterior and posterior. In Stage 3 (28–94 inner demibranch filaments), outer demibranch filaments began developing at shell length > 3.1 mm and about 34 months of age. The oral groove on the inner demibranch was first observed in 34 month old specimens > 2.66 mm but was never observed on the outer demibranch. Shell length (R2 = 0.99) was a better predictor of developmental stage compared to age (R2 = 0.84). The full suite of gill ciliation was present on filaments in all stages. Interfilamentary distance averaged 31.3 μm and did not change with age (4–44 months) or with size (0.75–8.9 mm). Distance between laterofrontal cirri couplets averaged 1.54 μm and did not change significantly with size or age. Labial palp primordia were present in even the youngest individuals but ciliature became more diverse in more developed individuals. Information presented here is valuable to captive rearing programmes as it provides insight in to when juveniles may be particularly vulnerable to stressors due to specific ontogenic changes. The data are compared with two other recent studies of Margaritifera development.N/

    Scrapheap Challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages

    Get PDF
    Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic “scrapheap”

    Excursions into the Evolution of Early-Type Galaxies in Clusters

    Full text link
    Recent observations have revealed that early-type galaxies (ETG) in clusters comprise an old galaxy population that is evolving passively. We review some recent observations from the ground and from HST that show that ETG have undergone a significant amount of luminosity evolution. This evolution is traced by two projections of the fundamental plane (FP): the size-magnitude relation (SMR) and the color-magnitude relation (CMR). We will briefly discuss the relevance of all these results in the context of the universality of the IMF.Comment: 10 pages, 2 figures, to appear in the proccedings of "New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology, Chavez et al. ed

    Use of functional feeding strategies to protect Atlantic salmon from virally-induced inflammatory diseases- mechanistic insights revealed by transcriptomic analysis

    Get PDF
    Over the past few years one of the major concerns in the Atlantic salmon (Salmo salar) farming industry has been the increasing incidence and severity of inflammatory viral diseases. Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS) are currently two of the most prevalent viral diseases in commercial Atlantic salmon farms in Norway. Mortality levels in both diseases are generally low but morbidity can be very high with the associated chronic inflammatory response lasting for several months. The consequent reduced growth performance is causing considerable financial impact as HSMI has become increasingly widespread in recent years. The impact of CMS is further exacerbated as it generally affects large fish close to harvest. HSMI lesions occur in the atrium and ventricle in the heart including inflammation and necrosis in epi- endo- and myocardium along with myositis of red skeletal muscle. CMS lesions are commonly observed in the spongy myocardium in the atrium and ventricle of the heart with severe mononuclear inflammation and necrosis. Furthermore, circulatory disturbances associated with reduced cardiac function cause multifocal liver steatosis and necrosis in both diseases. Currently there are no vaccines or any other effective treatments for these diseases and so alternative therapies that could potentially modulate the intensity of the inflammatory response could be crucial to improve the clinical manifestation of the diseases. Therefore, the overall aim of the present study was to evaluate the concept of “clinical nutrition” to improve the clinical symptoms of both viral diseases, HSMI and CMS, through the use of functional feeds formulated with reduced lipid content and increased proportions of anti-inflammatory fatty acids to moderate the apparently uncontrolled inflammatory response in the heart tissue associated with both diseases and also alleviate the secondary hepatic lesions. The experimental work consisted of three major dietary trials in Atlantic salmon in seawater. Two large trials investigated the effects of functional feeds in Atlantic salmon challenged with Atlantic salmon piscine reovirus (ASRV) and piscine myocarditis virus (PMCV), the causal agents of HSMI and CMS, respectively. In both trials, heart transcriptome, heart and liver histopathology and tissue lipid and fatty acid compositions and metabolism were determined post-infection in fish fed with the functional feeds in comparison with fish fed with a standard commercial feed formulation considered as a reference diet. All the functional feeds were formulated to have reduced digestible energy through lower dietary lipid and higher protein contents, and increased levels and proportions of anti-inflammatory long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic acid (EPA) compared with the reference diets. Histopathology, fatty acid composition and gene expression of heart were assessed over a long time-period of 16 weeks and 14 weeks post-challenge with ASRV and PMCV, respectively. Viral load in heart tissue, hepatic histopathology and fatty acid composition of liver and head kidney along with expression of the genes involved in the eicosanoid and LC-PUFA and eicosanoid biosynthesis pathways were also determined in the HSMI trial. The third trial was a nutritional trial evaluating the effects of dietary digestible energy content on lipid and fatty acid metabolism in salmon fed diets containing graded amounts of lipid. Fatty acid composition of liver and heart were assessed over 12 weeks, along with the hepatic expression of genes of lipid and fatty acid metabolism. The results of this research are presented in four chapters (Chapters 2-5) as four paper manuscripts. The manuscripts/Papers are either published (Chapter 2), in review (Chapter 3 and 4) or drafted for submission (Chapter 5) in appropriate peer-reviewed international journals. Chapter 2 and 3 correspond to the HSMI trial, Chapter 4 to the nutritional trial, and Chapter 5 to the CMS trial. Chapter 2 showed that viral load and histopathology scores were lower in fish fed the functional feeds, especially diet FF1, which displayed better performance. Diet strongly influenced the expression of genes related with the immune and inflammatory responses, with delayed expression in fish fed the functional feeds. Up-regulation of pro-inflammatory genes was correlated with the higher viral load observed at early-mid stages of the disease in fish fed the reference diet (ST). Expression of genes related with the immune response at 16-weeks post challenge reflected the differences in immunomodulation between the functional feeds, with fish fed diet FF1 showing lower expression. Therefore, severity of the heart lesions was correlated with the intensity of the immune response and could be associated with tissue anti-inflammatory LC-PUFA levels. Chapter 3 was focused on liver histopathology, fatty acid composition and LC-PUFA biosynthesis, along with phospholipid fatty acid composition and eicosanoid production in head kidney and heart tissue at early and late stages of ASRV infection. Liver was severely affected by the virus at the beginning of the infection in fish fed the reference ST diet, but the level of lesions were similar in all dietary groups at the end of the trial. Hepatic expression of fatty acyl desaturases was significantly depressed in fish fed the ST diet compare with fish fed the functional feeds despite the lower levels of dietary LC-PUFA in that feed. Thus endogenous production and bioavailability of anti-inflammatory LC-PUFA was potentially enhanced in fish fed the functional feeds. Changes in tissue lipid content, mobilization of fatty acids involved in inflammatory responses and changes in expression of transcription factors and genes involved in eicosanoid biosynthesis were more prominent in head kidney, confirming the important role of this organ in dietary immunomodulation after viral infection. To a lesser extent similar changes were observed in heart tissue, suggesting in situ production of eicosanoids could also be important. The unexpected effects of diet on expression of genes of LC-PUFA biosynthesis were specifically investigated in the trial described in Chapter 4. One aim of this study was to clarify whether dietary lipid content or viral infection was the cause of altered expression of desaturase genes between the different diets. Hepatic expression of other genes of lipid and fatty acid metabolism were also determined to evaluate metabolic changes associated with dietary lipid/energy level. In general, reduction of dietary energy and lipid contents while maintaining similar proportions of dietary fatty acids, led to a general up-regulation of genes involved in lipid biosynthetic pathways. Thus salmon fed lower energy diet showed increased liver expression of fatty acyl desaturases in comparison with fish fed higher energy levels. Heart transcriptomic data in Chapter 5 showed a similar delay in the inflammatory response in fish fed the functional feeds after PCMV infection as observed in the HSMI study. Modulation of inflammatory responses, similar to that previously described after ASRV infection, was also observed in fish fed the functional feeds. However, the differences in the expression of immune related genes and the level of heart lesions were not as prominent at mid-late stages of the disease as in fish fed FF1 in the HSMI trial. The present study demonstrated the beneficial effects of a clinical nutrition approach via functional feeds in two viral inflammatory diseases, HSMI and CMS, currently affecting farmed Atlantic salmon. Dietary immunomodulation increased the availability of anti-inflammatory LC-PUFA and significantly influenced the expression of the genes related with the immune/inflammatory response reducing the level and severity of cardiac and liver lesions and therefore improving the performance of fish suffering the diseases

    Deep-Ocean dissolved organic matter reactivity along the Mediterranea Sea: does size matter?

    Get PDF
    Original research paperDespite of the major role ascribed to marine dissolved organic matter (DOM) in the global carbon cycle, the reactivity of this pool in the dark ocean is still poorly understood. Present hypotheses, posed within the size-reactivity continuum (SRC) and the microbial carbon pump (MCP) conceptual frameworks, need further empirical support. Here, we provide field evidence of the soundness of the SRC model. We sampled the high salinity core-of-flow of the Levantine Intermediate Water along its westward route through the entire Mediterranean Sea. At selected sites, DOM was size-fractionated in apparent high (aHMW) and low (aLMW) molecular weight fractions using an efficient ultrafiltration cell. A percentage decline of the aHMW DOM from 68–76% to 40–55% was observed from the Levantine Sea to the Strait of Gibraltar in parallel with increasing apparent oxygen utilization (AOU). DOM mineralization accounted for 30±3% of the AOU, being the aHMW fraction solely responsible for this consumption, verifying the SRC model in the field. We also demonstrate that, in parallel to this aHMW DOM consumption, fluorescent humic-like substances accumulate in both fractions and protein-like substances decline in the aLMW fraction, thus indicating that not only size matters and providing field support to the MCP modelHOTMIX (grant number CTM2011–30010-C02 01-MAR and 02-MAR) and the project FERMIO (MINECO, CTM2014-57334-JIN), both co-financed with FEDER funds; (reference BES-2012- 056175) from the Spanish Ministry of Economy, Industry and Competitivenes; the project MODMED from CSIC (PIE, 201730E020) and CSIC Program “Junta para la Ampliación de Estudios” co-financed by the ESF (reference JAE DOC 040)Versión del editor2,92

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics

    Wound dressings for a proteolytic-rich environment

    Get PDF
    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed
    corecore