50 research outputs found

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Mode-matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Get PDF
    Boosting nonlinear frequency conversion in extremely confined volumes remains a key challenge in nano-optics, nanomedicine, photocatalysis, and background-free biosensing. To this aim, field enhancements in plasmonic nanostructures are often exploited to effectively compensate for the lack of phase-matching at the nanoscale. Second harmonic generation (SHG) is, however, strongly quenched by the high degree of symmetry in plasmonic materials at the atomic scale and in nanoantenna designs. Here, we devise a plasmonic nanoantenna lacking axial symmetry, which exhibits spatial and frequency mode overlap at both the excitation and the SHG wavelengths. The effective combination of these features in a single device allows obtaining unprecedented SHG conversion efficiency. Our results shed new light on the optimization of SHG at the nanoscale, paving the way to new classes of nanoscale coherent light sources and molecular sensing devices based on nonlinear plasmonic platforms.Comment: 14 pages, 4 figure

    Dielectric function of sub-10 nanometer thick gold films

    No full text
    A smooth gold (Au) film with thickness below 10 nanometer (nm) is hard to fabricate as well as to accurately measure its thickness and the corresponding dielectric function. Here, we report 5.4, 6.6 and 7.5 nm thick continuous Au films prepared on Chromium (Cr) seed layer. The thickness and dielectric function of the Au films are obtained using spectroscopic ellipsometry and first principles calculation. From the fitting results of the ellipsometric parameters, the value of the real part of dielectric function (ε1) is negative almost in the whole spectrum region indicating that the Au films are continuous. For the imaginary part of dielectric function (ε2), it decreases with increasing of the Au film thickness because the surface electrons scattering decreases. Moreover, the calculated and measured results of 5.4, 6.6 and 7.5 nm thick Au films present a good agreement in the wavelength range from 400 to 1600 nm. From the results of the first principles calculation, both ε1 and ε2 decrease with increasing of the Au film thickness. These precise measurement and calculation results of dielectric function are beneficial to nano-photoelectronic devices design with sub-10 nm Au films involved

    Through-space transfer of chiral information mediated by a plasmonic nanomaterial

    Get PDF
    The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionise the study of biomolecular processes. Such devices may structurally characterise the mechanisms of protein-ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of each of ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule
    corecore