54 research outputs found

    A population-based study of ambulatory and surgical services provided by orthopaedic surgeons for musculoskeletal conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ongoing process of population aging is associated with an increase in prevalence of musculoskeletal conditions with a concomitant increase in the demand of orthopaedic services. Shortages of orthopaedic services have been documented in Canada and elsewhere. This population-based study describes the number of patients seen by orthopaedic surgeons in office and hospital settings to set the scene for the development of strategies that could maximize the availability of orthopaedic resources.</p> <p>Methods</p> <p>Administrative data from the Ontario Health Insurance Plan and Canadian Institute for Health Information hospital separation databases for the 2005/06 fiscal year were used to identify individuals accessing orthopaedic services in Ontario, Canada. The number of patients with encounters with orthopaedic surgeons, the number of encounters and the number of surgeries carried out by orthopaedic surgeons were estimated according to condition groups, service location, patient's age and sex.</p> <p>Results</p> <p>In 2005/06, over 520,000 Ontarians (41 per 1,000 population) had over 1.3 million encounters with orthopaedic surgeons. Of those 86% were ambulatory encounters and 14% were in hospital encounters. The majority of ambulatory encounters were for an injury or related condition (44%) followed by arthritis and related conditions (37%). Osteoarthritis accounted for 16% of all ambulatory encounters. Orthopaedic surgeons carried out over 140,000 surgeries in 2005/06: joint replacement accounted for 25% of all orthopaedic surgeries, whereas closed repair accounted for 16% and reductions accounted for 21%. Half of the orthopaedic surgeries were for arthritis and related conditions.</p> <p>Conclusion</p> <p>The large volume of ambulatory care points to the significant contribution of orthopaedic surgeons to the medical management of chronic musculoskeletal conditions including arthritis and injuries. The findings highlight that surgery is only one component of the work of orthopaedic surgeons in the management of these conditions. Policy makers and orthopaedic surgeons need to be creative in developing strategies to accommodate the growing workload of orthopaedic surgeons without sacrificing quality of care of patients with musculoskeletal conditions.</p

    Path and Ridge Regression Analysis of Seed Yield and Seed Yield Components of Russian Wildrye (Psathyrostachys juncea Nevski) under Field Conditions

    Get PDF
    The correlations among seed yield components, and their direct and indirect effects on the seed yield (Z) of Russina wildrye (Psathyrostachys juncea Nevski) were investigated. The seed yield components: fertile tillers m-2 (Y1), spikelets per fertile tillers (Y2), florets per spikelet- (Y3), seed numbers per spikelet (Y4) and seed weight (Y5) were counted and the Z were determined in field experiments from 2003 to 2006 via big sample size. Y1 was the most important seed yield component describing the Z and Y2 was the least. The total direct effects of the Y1, Y3 and Y5 to the Z were positive while Y4 and Y2 were weakly negative. The total effects (directs plus indirects) of the components were positively contributed to the Z by path analyses. The seed yield components Y1, Y2, Y4 and Y5 were significantly (P<0.001) correlated with the Z for 4 years totally, while in the individual years, Y2 were not significant correlated with Y3, Y4 and Y5 by Peason correlation analyses in the five components in the plant seed production. Therefore, selection for high seed yield through direct selection for large Y1, Y2 and Y3 would be effective for breeding programs in grasses. Furthermore, it is the most important that, via ridge regression, a steady algorithm model between Z and the five yield components was founded, which can be closely estimated the seed yield via the components

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests significant impact on bacterial virulence and fitness

    Get PDF
    [Abstract] Bacterial genomics has revealed substantial amounts of prophage DNA in bacterial genomes. This integrated viral DNA has been shown to play important roles in the evolution of bacterial pathogenicity. Acinetobacter baumannii has shown a fast progression as a nosocomial multi-resistant pathogen in recent years, and is now considered one of the most dangerous microorganisms in hospital environments. The role of prophages in the evolution of A. baumannii pathogenicity has not yet been explored. In this context, we aimed at evaluating the impact of prophages on A. baumannii genomic diversity and pathogenicity. [...]info:eu-repo/semantics/publishedVersio

    Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii)

    Get PDF
    This study was supported by a WHOI Student Summer Fellowship and WHOI-MIT Joint Program, the Penzance Endowed Fund, the John E. and Anne W. Sawyer Endowed Fund and NSF Research Grant No. EF-1220034. Additional support came from NSF OCE 1041106 to ALC and DCM, and NOAA Sea Grant award #NA10OAR4170083 to ALC and DCM.Anthropogenic carbon dioxide (CO2) is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries. Atlantic longfin squid (Doryteuthis pealeii), an ecologically and economically valuable taxon, were reared from eggs to hatchlings (paralarvae) under ambient and elevated CO2 concentrations in replicated experimental trials. Animals raised under elevated pCO2demonstrated significant developmental changes including increased time to hatching and shorter mantle lengths, although differences were small. Aragonite statoliths, critical for balance and detecting movement, had significantly reduced surface area and were abnormally shaped with increased porosity and altered crystal structure in elevated pCO2-reared paralarvae. These developmental and physiological effects could alter squid paralarvae behavior and survival in the wild, directly and indirectly impacting marine food webs and commercial fisheries.Publisher PDFPeer reviewe
    corecore