4,036 research outputs found

    How typical is the Coma cluster?

    Get PDF
    Coma is frequently used as the archetype z~0 galaxy cluster to compare higher redshift work against. It is not clear, however, how representative the Coma cluster is for galaxy clusters of its mass or X-ray luminosity, and significantly: recent works have suggested that the galaxy population of Coma may be in some ways anomolous. In this work, we present a comparison of Coma to an X-ray selected control sample of clusters. We show that although Coma is typical against the control sample in terms of its internal kinematics (substructure and velocity dispersion profile), it has a significantly high (~3sigma) X-ray temperature set against clusters of comparable mass. By de-redshifting our control sample cluster galaxies star-formation rates using a fit to the galaxy main sequence evolution at z < 0.1, we determine that the typical star-formation rate of Coma galaxies as a function of mass is higher than for galaxies in our control sample at a confidence level of > 99 per cent. One way to alleviate this discrepency and bring Coma in-line with the control sample would be to have the distance to Coma to be slightly lower, perhaps through a non-negligible peculiar velocity with respect to the Hubble expansion, but we do not regard this as likely given precision measurements using a variety of approaches. Therefore in summary, we urge caution in using Coma as a z~0 baseline cluster in galaxy evolution studies.Comment: accepted for publication in MNRA

    Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593

    Get PDF
    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented

    Input guide for computer programs to generate thermodynamic data for air and Freon CF4

    Get PDF
    FORTRAN computer programs were developed to calculate the thermodynamic properties of Freon 14 and air for isentropic expansion from given plenum conditions. Thermodynamic properties for air are calculated with equations derived from the Beattie-Bridgeman nonstandard equation of state and, for Freon 14, with equations derived from the Redlich-Quang nonstandard equation of state. These two gases are used in scale model testing of model rocket nozzle flow fields which requires simulation of the prototype plume shape with a cold flow test approach. Utility of the computer programs for use in analytical prediction of flow fields is enhanced by arranging card or tape output of the data in a format compatible with a method-of-characteristics computer program

    Improving the Quality and Efficiency of the Medicare Program Through Coverage Policy

    Get PDF
    Outlines Medicare coverage and payment policy on new technologies and recommends changes that could help achieve the Triple Aim goals of enhancing the individual experience of care, improving population health, and reducing per capita costs of care

    Empirical Study of Simulated Two-planet Microlensing Event

    Get PDF
    We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multi-planet systems in which 292 planetary events including 16 two-planet events were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in one of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. This fraction is larger than, but statistically consistent with, the roughly 1.5% rate of serious mass errors due to unmodeled planetary companions for the 274 cases from the same simulation in which a single planet is recovered. We conjecture that an analogous effect due to unmodeled stellar companions may occur more frequently. For seven out of 23 cases in which two planets in the system would have been detected separately, only one planet was recovered because the perturbations due to the two planets had similar forms. This is a small fraction (7/274) of all recovered single-planet models, but almost a third of all events that might plausibly have led to two-planet models. Still, in these cases, the recovered planet tends to have parameters similar to one of the two real planets most responsible for the anomaly.Comment: 21 pages, 9 figures, 2 tables; submitted to ApJ; for a short video introducing the key results, see https://www.youtube.com/watch?v=qhK4a6sbfO

    Analysis of SRM model nozzle calibration test data in support of IA12B, IA12C and IA36 space shuttle launch vehicle aerodynamics tests

    Get PDF
    Variations of nozzle performance characteristics of the model nozzles used in the Space Shuttle IA12B, IA12C, IA36 power-on launch vehicle test series are shown by comparison between experimental and analytical data. The experimental data are nozzle wall pressure distributions and schlieren photographs of the exhaust plume shapes. The exhaust plume shapes were simulated experimentally with cold flow while the analytical data were generated using a method-of-characteristics solution. Exhaust plume boundaries, boundary shockwave locations and nozzle wall pressure measurements calculated analytically agree favorably with the experimental data from the IA12C and IA36 test series. For the IA12B test series condensation was suspected in the exhaust plumes at the higher pressure ratios required to simulate the prototype plume shapes. Nozzle calibration tests for the series were conducted at pressure ratios where condensation either did not occur or if present did not produce a noticeable effect on the plume shapes. However, at the pressure ratios required in the power-on launch vehicle tests condensation probably occurs and could significantly affect the exhaust plume shapes

    Welcome back, Polaris the Cepheid

    Full text link
    For about 100 years the amplitude of the 4-day pulsation in Polaris has decreased. We present new results showing a significant increase in the amplitude based on 4.5 years of continuous monitoring from the ground and with two satellite missions.Comment: 5 pages; to appear in the proceedings of the "Cool Stars 15" workshop held at St Andrews, U

    Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells

    Get PDF
    To investigate the role that aging-dependent accumulation of mitochondrial DNA (mtDNA) mutations plays in the senescence processes, mitochondria from fibroblasts of 21 normal human individuals between 20 weeks (fetal) and 103 years of age were introduced into human mtDNA-less (ρ0) 206 cells by cytoplast × ρ0 cell fusion, and 7-31 transformant clones were isolated from each fusion. A slight cell donor age-dependent decrease in growth rate was detected in the transformants. Using an O2 consumption rate of 1 fmol/min/cell, which was not observed in any transformant among 158 derived from individuals 20 weeks (fetal) to 37 years of age, as a cut-off to identify respiratory-deficient clones, 11 such clones were found among 198 transformants derived from individuals 39-103 years of age. Furthermore, conventional and nonparametric analysis of the respiratory rates of 356 clones revealed a very significant decrease with donor age. In other analyses, a very significant age-dependent decline in the mtDNA content of the clones was observed, without, however, any significant correlation with the decrease in O2 consumption rate in the defective transformants. These observations clearly indicate the occurrence in the fibroblast-derived transformants of two independent, age-related functional alterations of mtDNA, presumably resulting from structural damage to this genome

    Effects of Metallicity on the Rotation Rates of Massive Stars

    Full text link
    Recent theoretical predictions for low metallicity massive stars predict that these stars should have drastically reduced equatorial winds (mass loss) while on the main sequence, and as such should retain most of their angular momentum. Observations of both the Be/(B+Be) ratio and the blue-to-red supergiant ratio appear to have a metallicity dependence that may be caused by high rotational velocities. We have analyzed 39 archival Hubble Space Telescope Imaging Spectrograph (STIS), high resolution, ultraviolet spectra of O-type stars in the Magellanic Clouds to determine their projected rotational velocities V sin i. Our methodology is based on a previous study of the projected rotational velocities of Galactic O-type stars using International Ultraviolet Explorer (IUE) Short Wavelength Prime (SWP) Camera high dispersion spectra, which resulted in a catalog of V sin i values for 177 O stars. Here we present complementary V sin i values for 21 Large Magellanic Cloud and 22 Small Magellanic Cloud O-type stars based on STIS and IUE UV spectroscopy. The distribution of V sin i values for O type stars in the Magellanic Clouds is compared to that of Galactic O type stars. Despite the theoretical predictions and indirect observational evidence for high rotation, the O type stars in the Magellanic Clouds do not appear to rotate faster than their Galactic counterparts.Comment: accepted by ApJ, to appear 20 December 2004 editio
    corecore