3,882 research outputs found
Generalised relativistic Ohm's laws, extended gauge transformations and magnetic linking
Generalisations of the relativistic ideal Ohm's law are presented that
include specific dynamical features of the current carrying particles in a
plasma. Cases of interest for space and laboratory plasmas are identified where
these generalisations allow for the definition of generalised electromagnetic
fields that transform under a Lorentz boost in the same way as the real
electromagnetic fields and that obey the same set of homogeneous Maxwell's
equations
Lagrangian coherent structures and plasma transport processes
A dynamical system framework is used to describe transport processes in
plasmas embedded in a magnetic field. For periodic systems with one degree of
freedom the Poincar\'e map provides a splitting of the phase space into regions
where particles have different kinds of motion: periodic, quasi-periodic or
chaotic. The boundaries of these regions are transport barriers; i.e., a
trajectory cannot cross such boundaries during the whole evolution of the
system. Lagrangian Coherent Structure (LCS) generalize this method to systems
with the most general time dependence, splitting the phase space into regions
with different qualitative behaviours. This leads to the definition of
finite-time transport barriers, i.e. trajectories cannot cross the barrier for
a finite amount of time. This methodology can be used to identify fast
recirculating regions in the dynamical system and to characterize the transport
between them
Two-Surface Wave Decay
Using an analytical model we discuss the parametric excitation of pairs of
electron surface waves (ESW) in the interaction of an ultrashort, intense laser
pulse with an overdense plasma which has a step-like density profile. The ESWs
can be excited either by the electric or by the magnetic part of the Lorentz
force exerted by the laser and, correspondingly, have frequencies around
or , where is the laser frequency.Comment: 4 EPS figures, Revte
An efficient method to include equality constraints in branch current distribution system state estimation
Distribution system state estimation is a fundamental tool for the management and control functions envisaged for future distribution grids. The design of accurate and efficient algorithms is essential to provide estimates compliant with the needed accuracy requirements and to allow the real-time operation of the different applications. To achieve such requirements, peculiarities of the distribution systems have to be duly taken into account. Branch current-based estimators are an efficient solution for performing state estimation in radial or weakly meshed networks. In this paper, a simple technique, which exploits the particular formulation of the branch current estimators, is proposed to deal with zero injection and mesh constraints. Tests performed on an unbalanced IEEE 123-bus network show the capability of the proposed method to further improve efficiency performance of branch current estimators
Wasserstein principal component analysis for circular measures
We consider the 2-Wasserstein space of probability measures supported on the unit-circle, and propose a framework for Principal Component Analysis (PCA) for data living in such a space. We build on a detailed investigation of the optimal transportation problem for measures on the unit-circle which might be of independent interest. In particular, building on previously obtained results, we derive an expression for optimal transport maps in (almost) closed form and propose an alternative definition of the tangent space at an absolutely continuous probability measure, together with fundamental characterizations of the associated exponential and logarithmic maps. PCA is performed by mapping data on the tangent space at the Wasserstein barycentre, which we approximate via an iterative scheme, and for which we establish a sufficient a posteriori condition to assess its convergence. Our methodology is illustrated on several simulated scenarios and a real data analysis of measurements of optical nerve thickness
Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas
The evolution of the filamentation instability produced by two
counter-streaming pair plasmas is studied with particle-in-cell (PIC)
simulations in both one (1D) and two (2D) spatial dimensions. Radiation
friction effects on particles are taken into account. After an exponential
growth of both the magnetic field and the current density, a nonlinear
quasi-stationary phase sets up characterized by filaments of opposite currents.
During the nonlinear stage, a strong broadening of the particle energy spectrum
occurs accompanied by the formation of a peak at twice their initial energy. A
simple theory of the peak formation is presented. The presence of radiative
losses does not change the dynamics of the instability but affects the
structure of the particle spectra.Comment: 8 pages, 8 figures, submitted to MNRA
Parceria entre Embrapa Clima Temperado e Faculdade de Medicina Veterinária da UFPel obtĂ©m os primeiros embriões suĂnos viáveis pelo sistema de produção in vitro.
bitstream/item/58343/1/31-embrioes-Ligia.pd
Coherent transport structures in magnetized plasmas II: Numerical results
In a pair of linked articles (called Article I and II respectively) we apply
the concept of Lagrangian Coherent Structures borrowed from the study of
Dynamical Systems to magnetic field configurations in order to separate regions
where field lines have different kind of behavior. In the present article,
article II, by means of a numerical procedure we investigate the Lagrangian
Coherent Structures in the case of a two-dimensional magnetic configuration
with two island chains that are generated by magnetic reconnection and evolve
nonlinearly in time. The comparison with previous results, obtained by assuming
a fixed magnetic field configuration, allows us to explore the dependence of
transport barriers on the particle velocity
- …