2,924 research outputs found

    Specific pollinator attraction and the diversification of sexually deceptive Chiloglottis (Orchidaceae)

    Get PDF
    Abstract.: Evidence indicates that sexually deceptive Chiloglottis R.Br. (Orchidaceae) taxa specifically attract their thynnine wasp (Tiphiidae) pollinators through the floral odour mimicry of female wasp sex pheromones. We use amplified fragment length polymorphisms (AFLPs) to reconstruct the species-level phylogeny of Chiloglottis, make a preliminary evaluation of genetic distinctions between species, and compare the historical association among orchids and their pollinators using wasp sequence data from a previous study. AFLPs show large differences between three sub-generic clades relative to that found among species within each clade. Interspecific genetic barriers are indicated by AFLP discontinuities among species unlike in previously reported DNA sequence data. However, such barriers are demonstrated clearly in only one of the two pairs of sympatric species sampled more intensively. We interpret these patterns as indicating either (i) a rapid and recent radiation of species within each clade following histories of stasis or extinction, or (ii) alternating cycles of divergence and gene flow acting to homogenize genetic differences among species within each of the three clade

    (Methylthio)phenol semiochemicals are exploited by deceptive orchids as sexual attractants for Campylothynnus thynnine wasps

    Get PDF
    Until recently, (methylthio)phenols as natural products had only been reported from bacteria. Now, four representatives of this class of sulfurous aromatic compounds have been discovered as semiochemicals in the orchid Caladenia crebra, which secures pollination by sexual deception. In this case, field bioassays confirmed that a 10:1 blend of 2-(methylthio)benzene-1,4-diol (1) and 4-hydroxy-3-(methylthio)benzaldehyde (2) sexually attracts the male thynnine wasp Campylothynnus flavopictus (Tiphiidae:Thynnineae), the exclusive pollinator of C. crebra. Here we show with field bioassays that another undescribed species of Campylothynnus (sp. A) is strongly sexually attracted to a 1:1 blend of compounds 1 and 2, which elicits very high attempted copulation rates (88%). We also confirm that this Campylothynnus species is a pollinator of Caladenia attingens subsp. attingens. Chemical analysis of the flowers of this orchid revealed two (methylthio)phenols, compound 2 and 2-(methylthio)phenol (3), as candidate semiochemicals involved in pollinator attraction. Thus, (methylthio)phenols are likely to be more widely used than presently known. The confirmation of this Campylothynnus as a pollinator of C. attingens subsp. attingens at our study sites was unexpected, since elsewhere this orchid is pollinated by a different thynnine wasp (Thynnoides sp). In general, sexually deceptive Caladenia only use a single species of pollinator, and as such, this unusual case may offer a tractable study system for understanding the chemical basis of pollinator switching in sexually deceptive orchids.BB and RDP: Australian Research Council (ARC) Discovery Early Career Researcher Awards (DE 160101313 and DE150101720), RDP: the Australian Orchid Foundation and the Holsworth Wildlife Research Endowment, RP and GRF: ARC grant (LP130100162) and RP: ARC grant (DP150102762)

    The volatile chemistry of orchid pollination

    Get PDF
    Covering: up to September 2022 Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field

    The effect of Schmidt number on gravity current flows: The formation of large-scale three-dimensional structures

    Get PDF
    The Schmidt number, defined as the ratio of scalar to momentum diffusivity, varies by multiple orders of magnitude in real-world flows, with large differences in scalar diffusivity between temperature, solute, and sediment driven flows. This is especially crucial in gravity currents, where the flow dynamics may be driven by differences in temperature, solute, or sediment, and yet the effect of Schmidt number on the structure and dynamics of gravity currents is poorly understood. Existing numerical work has typically assumed a Schmidt number near unity, despite the impact of Schmidt number on the development of fine-scale flow structure. The few numerical investigations considering high Schmidt number gravity currents have relied heavily on two-dimensional simulations when discussing Schmidt number effects, leaving the effect of high Schmidt number on three-dimensional flow features unknown. In this paper, three-dimensional direct numerical simulations of constant-influx solute-based gravity currents with Reynolds numbers 100 ≤ R e ≤ 3000 and Schmidt number 1 are presented, with the effect of Schmidt number considered in cases with (R e, S c) = (100, 10), (100, 100), and (500, 10). These data are used to establish the effect of Schmidt number on different properties of gravity currents, such as density distribution and interface stability. It is shown that increasing Schmidt number from 1 leads to substantial structural changes not seen with increased Reynolds number in the range considered here. Recommendations are made regarding lower Schmidt number assumptions, usually made to reduce computational cost

    Stress-Particle Smoothed Particle Hydrodynamics: an application to the failure and post-failure behaviour of slopes

    Get PDF
    We present a new numerical approach in the framework of Smooth Particle Hydrodynamics (SPH) to solve the zero energy modes and tensile instabilities, without the need for the fine tuning of non-physical artificial parameters. The method uses a combination of stress-points and nodes and includes a new stress-point position updating scheme that also removes the need to implement artificial repulsive forces at the boundary. The model is validated for large deformation geomechanics problems, and is able to simulate strain localisation within soil samples and slopes. In particular, the new model produces stable and accurate results of the failure and post-failure of slopes, consisting of both cohesive and cohesionless materials, for the first time

    Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

    Get PDF
    Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and rainfall record of the Belham River valley at the Soufrière Hills volcano (SHV), Montserrat, collected between April 2010 and April 2012. In addition to the use of peak rainfall intensity (PRI) as a base forecasting parameter, considerations for the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak 1 h rainfall intensity throughout the 2-year dataset and is higher under given rainfall conditions in year 1 than year 2. The probability of lahars is also enhanced during the wet season, when large-scale synoptic weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into logistic-regression-based rain-triggered lahar probability estimation models is shown to enhance model performance and displays the potential for successful real-time prediction of lahars, even in areas featuring strongly seasonal climates and temporal catchment recovery

    Spatial and temporal evolution of an experimental debris flow, exhibiting coupled fluid and particulate phases

    Get PDF
    The internal behaviour of debris flows provides fundamental insight into the mechanics responsible for their motion. We provide robust velocity data within a small-scale experimental debris flow, consisting of the instantaneous release of a granular material along a rectangular flume, inclined at 31∘. The results show a unique layered transition from a collisional, turbulent front to a non-fluctuating viscous-type flow body, exhibiting strong fluid-particulate coupling. This is the first time that the internal dynamics have been documented within the full architecture of a developing experimental debris flow, from the head to the tail

    Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones

    Get PDF
    A detailed field investigation of a saline gravity current in the southwest Black Sea has enabled the first complete analysis of three-dimensional flow structure and dynamics of a series of linked hydraulic jumps in stratified, density-driven, flows. These field observations were collected using an acoustic Doppler current profiler mounted on an autonomous underwater vehicle, and reveal that internal mixing processes in hydraulic jumps, including flow expansion and recirculation, provide a previously unrecognised mechanism for grain-size sorting and segregation in stratified density-driven flows. Field observations suggest a newly identified type of hydraulic jump, that is a stratified low Froude number (< 1.5–2) subaqueous hydraulic jump, with an enhanced ability to transport sediment downstream of the jump, in comparison to hydraulic jumps in other subaerial and submarine flows. These novel field data underpin a new process-based conceptual model of channel lobe transition zones (CLTZs) that explains the scattered offset nature of scours within such settings, the temporal variations in infill and erosion between adjacent scours, how bed shear stresses are maintained across the CLTZ, and why the locus of deposition is so far downstream of the scour zone

    Longitudinal flow evolution and turbulence structure of dynamically similar, sustained, saline density and turbidity currents

    Get PDF
    Experimental results are presented concerning flow evolution and turbulence structure of sustained saline and turbidity flows generated on 0°, 3°, 6°, and 9° sloping ramps that terminate abruptly onto a horizontal floor. Two-component velocity and current density were measured with an ultrasonic Doppler velocity profiler and siphon sampler on the slope, just beyond the slope break and downstream on the horizontal floor. Three main factors influence longitudinal flow evolution and turbulence structure: sediment transport and sedimentation, slope angle, and the presence of a slope break. These controls interact differently depending on flow type. Sediment transport is accompanied by an inertial fluid reaction that enhances Reynolds stresses in turbidity flows. Thus turbidity flows mix more vigorously than equivalent saline density flows. For saline flows, turbulent kinetic energy is dependent on slope, and rapid deceleration occurs on the horizontal floor. For turbidity flows, normalized turbulent kinetic energy increases downstream, and mean streamwise deceleration is reduced compared with saline flows. The slope break causes mean bed-normal velocity of turbidity flows to become negative and have a gentler gradient compared with other locations. A reduction of peak Reynolds normal stress in the bed-normal direction is accompanied by an increase in turbulent accelerations across the rest of the flow thickness. Thus the presence of particles acts to increase Reynolds normal stresses independently of gradients of mean velocity, and sediment transport increases across the break in slope. The experiments illustrate that saline density currents may not be good dynamic analogues for natural turbidity currents
    corecore