38 research outputs found
Human Computation and Convergence
Humans are the most effective integrators and producers of information,
directly and through the use of information-processing inventions. As these
inventions become increasingly sophisticated, the substantive role of humans in
processing information will tend toward capabilities that derive from our most
complex cognitive processes, e.g., abstraction, creativity, and applied world
knowledge. Through the advancement of human computation - methods that leverage
the respective strengths of humans and machines in distributed
information-processing systems - formerly discrete processes will combine
synergistically into increasingly integrated and complex information processing
systems. These new, collective systems will exhibit an unprecedented degree of
predictive accuracy in modeling physical and techno-social processes, and may
ultimately coalesce into a single unified predictive organism, with the
capacity to address societies most wicked problems and achieve planetary
homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added
references to page 1 and 3, and corrected typ
Beyond collective intelligence: Collective adaptation
Data accessibility:
This article has no additional data.Copyright © 2023 The Authors. We develop a conceptual framework for studying collective adaptation in complex socio-cognitive systems, driven by dynamic interactions of social integration strategies, social environments and problem structures. Going beyond searching for ‘intelligent’ collectives, we integrate research from different disciplines and outline modelling approaches that can be used to begin answering questions such as why collectives sometimes fail to reach seemingly obvious solutions, how they change their strategies and network structures in response to different problems and how we can anticipate and perhaps change future harmful societal trajectories. We discuss the importance of considering path dependence, lack of optimization and collective myopia to understand the sometimes counterintuitive outcomes of collective adaptation. We call for a transdisciplinary, quantitative and societally useful social science that can help us to understand our rapidly changing and ever more complex societies, avoid collective disasters and reach the full potential of our ability to organize in adaptive collectives.This research originated at a workshop at the Santa Fe Institute, funded by the National Science Foundation grant NSF BCS 1745154. A.M.B. was supported by the H. Mason Keeler Endowed Professorship in Sports Fisheries Management. C.G. was partially supported by the Defense Advanced Research Projects Agency, award no. FP00002636. M.G. was partially supported by NSF DRMS 1757211. M.G. and H.O. were partially supported by NSF SocPsych 1918490. E.L. was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (no. RS-2022-00165916)
Hearing aid effectiveness after aural rehabilitation - individual versus group (HEARING) trial: RCT design and baseline characteristics
<p>Abstract</p> <p>Background</p> <p>Hearing impairment is the most common body system disability in veterans. In 2008, nearly 520,000 veterans had a disability for hearing loss through the Department of Veterans Affairs (VA). Changes in eligibility for hearing aid services, along with the aging population, contributed to a greater than 300% increase in the number of hearing aids dispensed from 1996 to 2006. In 2006, the VA committed to having no wait times for patient visits while providing quality clinically-appropriate care. One approach to achieving this goal is the use of group visits as an alternative to individual visits. We sought to determine: 1) if group hearing aid fitting and follow-up visits were at least as effective as individual visits, and 2) whether group visits lead to cost savings through the six month period after the hearing aid fitting. We describe the rationale, design, and characteristics of the baseline cohort of the first randomized clinical trial to study the impact of group versus individual hearing aid fitting and follow-up visits.</p> <p>Methods</p> <p>Participants were recruited from the VA Puget Sound Health Care System Audiology Clinic. Eligible patients had no previous hearing aid use and monaural or binaural air-conduction hearing aids were ordered at the evaluation visit. Participants were randomized to receive the hearing aid fitting and the hearing aid follow-up in an individual or group visit. The primary outcomes were hearing-related function, measured with the first module of the Effectiveness of Aural Rehabilitation (Inner EAR), and hearing aid adherence. We tracked the total cost of planned and unplanned audiology visits over the 6-month interval after the hearing aid fitting.</p> <p>Discussion</p> <p>A cohort of 659 participants was randomized to receive group or individual hearing aid fitting and follow-up visits. Baseline demographic and self-reported health status and hearing-related measures were evenly distributed across the treatment arms.</p> <p>Outcomes after the 6-month follow-up period are needed to determine if group visits were as least as good as those for individual visits and will be reported in subsequent publication.</p> <p>Trial Registration</p> <p>NCT00260663</p
Cheaters allow cooperators to prosper
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation
Analogy as a Catalyst for Cumulative Cultural Evolution
This is the author's accepted manuscript, the final version is available from Elsevier via the DOI in this record.Analogies, broadly defined, map novel concepts onto familiar concepts, making them essential for perception, reasoning, and communication. We argue that analogy-building served a critical role in the evolution of cumulative culture by allowing humans to learn and transmit complex behavioural sequences that would otherwise be too cognitively demanding or opaque to acquire. The emergence of a protolanguage consisting of simple labels would have provided early humans with the cognitive tools to build explicit analogies and to communicate them to others. This focus on analogy-building can shed new light on the coevolution of cognition and culture and addresses recent calls for better integration of the field of cultural evolution with cognitive science
Theory development with agent-based models
Many social phenomena do not result solely from intentional actions by isolated individuals, but rather emerge as the result of repeated interactions among multiple individuals over time. However, such phenomena are often poorly captured by traditional empirical techniques. Moreover, complex adaptive systems are insufficiently described by verbal models. In this paper, we discuss how organizational psychologists and group dynamics researchers may benefit from the adoption of formal modeling, particularly agent-based modeling, for developing and testing richer theories. Agent-based modeling is well suited to capture multilevel dynamic processes and offers superior precision to verbal models. As an example, we present a model of social identity dynamics used to test the predictions of Brewer’s (1991) optimal distinctiveness theory, and discuss how the model extends the theory and produces novel research questions. We close with a general discussion on theory development using agent-based models
Resilience by structural entrenchment: Dynamics of single-layer and multiplex networks following sudden changes to tie costs
We examine a model of network formation in single-layer and multiplex networks in which individuals have positive incentives for social ties, closed triangles, and spillover edges. In particular, we investigate the influence of shocks to the network in which the cost of social ties changes after an initial equilibrium. We highlight the emergence of structural entrenchment: the retention of structural features, such as closed triangles and spillover edges, which are formed under historically different conditions from those currently driving network evolution. This work has broad implications for understanding path dependence in the structure and dynamics of single-layer and multiplex networks
Recommended from our members
Resilience by structural entrenchment: Dynamics of single-layer and multiplex networks following sudden changes to tie costs
We examine a model of network formation in single-layer and multiplex networks in which individuals have positive incentives for social ties, closed triangles, and spillover edges. In particular, we investigate the influence of shocks to the network in which the cost of social ties changes after an initial equilibrium. We highlight the emergence of structural entrenchment: the retention of structural features, such as closed triangles and spillover edges, which are formed under historically different conditions from those currently driving network evolution. This work has broad implications for understanding path dependence in the structure and dynamics of single-layer and multiplex networks