98 research outputs found

    The Transcriptome of Human Epicardial, Mediastinal and Subcutaneous Adipose Tissues in Men with Coronary Artery Disease

    Get PDF
    The biological functions of epicardial adipose tissue (EAT) remain largely unknown. However, the proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). The objectives of this study were to identify genes differentially regulated among three adipose tissues, namely EAT, mediastinal (MAT) and subcutaneous (SAT) and to study their possible relationships with the development of cardiovascular diseases.Samples were collected from subjects undergoing coronary artery bypass grafting surgeries. Gene expression was evaluated in the three adipose depots of six men using the Illumina® HumanWG-6 v3.0 expression BeadChips. Twenty-three and 73 genes were differentially up-regulated in EAT compared to MAT and SAT, respectively. Ninety-four genes were down-regulated in EAT compared to SAT. However, none were significantly down-regulated in EAT compared to MAT. More specifically, the expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (EAT>MAT>SAT). The results of ADORA1 and PTGDS were confirmed by quantitative real-time PCR in 25 independent subjects.Overall, the transcriptional profiles of EAT and MAT were similar compared to the SAT. Despite this similarity, two genes involved in cardiovascular diseases, ADORA1 and PTGDS, were differentially up-regulated in EAT. These results provide insights about the biology of EAT and its potential implication in CAD

    Integrated community case management in a peri-urban setting: a qualitative evaluation in Wakiso District, Uganda.

    Get PDF
    Integrated community case management (iCCM) strategies aim to reach poor communities by providing timely access to treatment for malaria, pneumonia and diarrhoea for children under 5 years of age. Community health workers, known as Village Health Teams (VHTs) in Uganda, have been shown to be effective in hard-to-reach, underserved areas, but there is little evidence to support iCCM as an appropriate strategy in non-rural contexts. This study aimed to inform future iCCM implementation by exploring caregiver and VHT member perceptions of the value and effectiveness of iCCM in peri-urban settings in Uganda.A qualitative evaluation was conducted in seven villages in Wakiso district, a rapidly urbanising area in central Uganda. Villages were purposively selected, spanning a range of peri-urban settlements experiencing rapid population change. In each village, rapid appraisal activities were undertaken separately with purposively selected caregivers (n = 85) and all iCCM-trained VHT members (n = 14), providing platforms for group discussions. Fifteen key informant interviews were also conducted with community leaders and VHT members. Thematic analysis was based on the 'Health Access Livelihoods Framework'.iCCM was perceived to facilitate timely treatment access and improve child health in peri-urban settings, often supplanting private clinics and traditional healers as first point of care. Relative to other health service providers, caregivers valued VHTs' free, proximal services, caring attitudes, perceived treatment quality, perceived competency and protocol use, and follow-up and referral services. VHT effectiveness was perceived to be restricted by inadequate diagnostics, limited newborn care, drug stockouts and VHT member absence - factors which drove utilisation of alternative providers. Low community engagement in VHT selection, lack of referral transport and poor availability of referral services also diminished perceived effectiveness. The iCCM strategy was widely perceived to result in economic savings and other livelihood benefits.In peri-urban areas, iCCM was perceived as an effective, well-utilised strategy, reflecting both VHT attributes and gaps in existing health services. Depending on health system resources and organisation, iCCM may be a useful transitional service delivery approach. Implementation in peri-urban areas should consider tailored community engagement strategies, adapted selection criteria, and assessment of population density to ensure sufficient coverage

    Political dynamics promoting the incremental regulation of secondhand smoke: a case study of New South Wales, Australia

    Get PDF
    BACKGROUND: The history of governmental responses to the accumulation of scientific evidence about the harms of secondhand smoke (SHS) presents an intriguing case study of incremental public health policy development. Australia has long been considered a world-leader in progressive tobacco control policies, but in the last decade has fallen behind other jurisdictions in introducing SHS legislation that protects all workers. Bars, clubs and pubs remain the only public indoor spaces where smoking is legally permitted, despite SHS exposure in the hospitality industry being higher and affecting more people than in any other setting after domestic exposure. This paper examines the political dynamics that have shaped this incremental approach to SHS. METHODS: In-depth interviews with 21 key stakeholders in the state of New South Wales (NSW), including politicians, their advisors, health officials and tobacco control advocates, were conducted and subjected to thematic content analysis. Interviewees' comments provided insights into the dynamics surrounding the debates and outcomes of SHS legislative attempts and the current political environment, and about how to progress SHS legislation. RESULTS: SHS restrictions have been delayed by several broad factors: the influence of industry groups successfully opposing regulation; issue wear-out; and political perceptions that there is not a salient constituency demanding that smoking be banned in bars and clubs. Interviewees also provided suggestions of strategies that advocates might utilise to best overcome the current political inertia of incremental compromises and achieve timely comprehensive smoking bans. CONCLUSION: Advocates concerned to shorten the duration of incremental endgames must continue to insist that governments address SHS fundamentally as a health issue rather than making political concessions to industry groups, and should broaden and amplify community voices calling on governments to finish the job. Publicity to the growing number of state and national governments that have successfully implemented total bans over the past decade is likely to make incrementalism an increasingly unattractive political option

    Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma

    Get PDF
    Background: Suppressive immune cells present in tumour microenvironments are known to augment tumour growth and hamper efficacy of antitumour therapies. The amino-bisphosphonate Zoledronic acid (ZA) is considered as an antitumour agent, as recent studies showed that ZA prolongs disease-free survival in cancer patients. The exact mechanism is a topic of debate; it has been suggested that ZA targets tumour-associated macrophages (TAMs). Methods: We investigate the role of ZA on the myeloid differentiation to TAMs in murine mesothelioma in vivo and in vitro. Mice were intraperitoneally inoculated with a lethal dose of mesothelioma tumour cells and treated with ZA to determine the effects on myeloid differentiation and survival. Results: We show that ZA impaired myeloid differentiation. Inhibition of myeloid differentiation led to a reduction in TAMs, but

    Temporal-Difference Reinforcement Learning with Distributed Representations

    Get PDF
    Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the believed state of the world to distribute across sets of equivalent states. Distributed exponential discounting factors produce hyperbolic discounting in the behavior of the agent itself. We examine these issues in the context of a TD RL model in which state-belief is distributed over a set of exponentially-discounting “micro-Agents”, each of which has a separate discounting factor (γ). Each µAgent maintains an independent hypothesis about the state of the world, and a separate value-estimate of taking actions within that hypothesized state. The overall agent thus instantiates a flexible representation of an evolving world-state. As with other TD models, the value-error (δ) signal within the model matches dopamine signals recorded from animals in standard conditioning reward-paradigms. The distributed representation of belief provides an explanation for the decrease in dopamine at the conditioned stimulus seen in overtrained animals, for the differences between trace and delay conditioning, and for transient bursts of dopamine seen at movement initiation. Because each µAgent also includes its own exponential discounting factor, the overall agent shows hyperbolic discounting, consistent with behavioral experiments

    Editing the genome of chicken primordial germ cells to introduce alleles and study gene function

    Get PDF
    With continuing advances in genome sequencing technology, the chicken genome assembly is now better annotated with improved accuracy to the level of single nucleotide polymorphisms. Additionally, the genomes of other birds such as the duck, turkey and zebra finch have now been sequenced. A great opportunity exists in avian biology to use genome editing technology to introduce small and defined sequence changes to create specific haplotypes in chicken to investigate gene regulatory function, and also perform rapid and seamless transfer of specific alleles between chicken breeds. The methods for performing such precise genome editing are well established for mammalian species but are not readily applicable in birds due to evolutionary differences in reproductive biology. A significant leap forward to address this challenge in avian biology was the development of long-term culture methods for chicken primordial germ cells (PGCs). PGCs present a cell line in which to perform targeted genetic manipulations that will be heritable. Chicken PGCs have been successfully targeted to generate genetically modified chickens. However, genome editing to introduce small and defined sequence changes has not been demonstrated in any avian species. To address this deficit, the application of CRISPR/Cas9 and short oligonucleotide donors in chicken PGCs for performing small and defined sequence changes was investigated in this thesis. Specifically, homology-directed DNA repair (HDR) using oligonucleotide donors along with wild-type CRISPR/Cas9 (SpCas9-WT) or high fidelity CRISPR/Cas9 (SpCas9-HF1) was investigated in cultured chicken PGCs. The results obtained showed that small sequences changes ranging from a single to a few nucleotides could be precisely edited in many loci in chicken PGCs. In comparison to SpCas9-WT, SpCas9-HF1 increased the frequency of biallelic and single allele editing to generate specific homozygous and heterozygous genotypes. This finding demonstrates the utility of high fidelity CRISPR/Cas9 variants for performing sequence editing with high efficiency in PGCs. Since PGCs can be converted into pluripotent stem cells that can potentially differentiate into many cell types from the three germ layers, genome editing of PGCs can, therefore, be used to generate PGC-derived avian cell types with defined genetic alterations to investigate the host-pathogen interactions of infectious avian diseases. To investigate this possibility, the chicken ANP32A gene was investigated as a target for genetic resistance to avian influenza virus in PGC-derived chicken cell lines. Targeted modification of ANP32A was performed to generate clonal lines of genome-edited PGCs. Avian influenza minigenome replication assays were subsequently performed in the ANP32A-mutant PGC-derived cell lines. The results verified that ANP32A function is crucial for the function of both avian virus polymerase and human-adapted virus polymerase in chicken cells. Importantly, an asparagine to isoleucine mutation at position 129 (N129I) in chicken ANP32A failed to support avian influenza polymerase function. This genetic change can be introduced into chickens and validated in virological studies. Importantly, the results of my investigation demonstrate the potential to use genome editing of PGCs as an approach to generate many types of unique cell models for the study of avian biology. Genome editing of PGCs may also be applied to unravel the genes that control the development of the avian germ cell lineage. In the mouse, gene targeting has been extensively applied to generate loss-of-function mouse models to use the reverse genetics approach to identify key genes that regulate the migration of specified PGCs to the genital ridges. Avian PGCs express similar cytokine receptors as their mammalian counterparts. However, the factors guiding the migration of avian PGCs are largely unknown. To address this, CRISPR/Cas9 was used in this thesis to generate clonal lines of chicken PGCs with loss-of-function deletions in the CXCR4 and c-Kit genes which have been implicated in controlling mouse PGC migration. The results showed that CXCR4-deficient PGCs are absent from the gonads whereas c-Kit-deficient PGCs colonise the developing gonads in reduced numbers and are significantly reduced or absent from older stages. This finding shows a conserved role for CXCR4 and c-Kit signalling in chicken PGC development. Importantly, other genes suspected to be involved in controlling the development of avian germ cells can be investigated using this approach to increase our understanding of avian reproductive biology. Finally, the methods developed in this thesis for editing of the chicken genome may be applied in other avian species once culture methods for the PGCs from these species are develope
    corecore