28 research outputs found

    Significant genetic differentiation among populations of Anomalocardia brasiliana (Gmelin, 1791): A bivalve with planktonic larval dispersion

    Get PDF
    Four Brazilian populations of Anomalocardia brasiliana were tested for mutual genetic homogeneity, using data from 123 sequences of the mtDNA cytochrome oxidase c subunit I gene. A total of 36 haplotypes were identified, those shared being H3 (Canela Island, Prainha and Acupe) and both H5 and H9 (Prainha and Acupe). Haplotype diversity values were high, except for the Camurupim population, whereas nucleotide values were low in all the populations, except for that of Acupe. Only the Prainha population showed a deviation from neutrality and the SSD test did not reject the demographic expansion hypothesis. Fst values showed that the Prainha and Acupe populations represent a single stock, whereas in both the Canela Island and Camurupim stocks, population structures are different and independent. The observed structure at Canela Island may be due to the geographic distance between this population and the remainder. The Camurupim population does not share any haplotype with the remaining populations in northeastern Brazil. The apparent isolation could be due to the rocky barrier located facing the mouth of the Mamanguape River. The results highlight the importance of wide-scale studies to identify and conserve local genetic diversity, especially where migration is restricted

    Unexpected Fine-Scale Population Structure in a Broadcast-Spawning Antarctic Marine Mollusc

    Get PDF
    Several recent empirical studies have challenged the prevailing dogma that broadcast-spawning species exhibit little or no population genetic structure by documenting genetic discontinuities associated with large-scale oceanographic features. However, relatively few studies have explored patterns of genetic differentiation over fine spatial scales. Consequently, we used a hierarchical sampling design to investigate the basis of a weak but significant genetic difference previously reported between Antarctic limpets (Nacella concinna) sampled from Adelaide and Galindez Islands near the base of the Antarctic Peninsula. Three sites within Ryder Bay, Adelaide Island (Rothera Point, Leonie and Anchorage Islands) were each sub-sampled three times, yielding a total of 405 samples that were genotyped at 155 informative Amplified Fragment Length Polymorphisms (AFLPs). Contrary to our initial expectations, limpets from Anchorage Island were found to be subtly, but significantly distinct from those sampled from the other sites. This suggests that local processes may play an important role in generating fine-scale population structure even in species with excellent dispersal capabilities, and highlights the importance of sampling at multiple spatial scales in population genetic surveys

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Cross-Modulation of Homeostatic Responses to Temperature, Oxygen and Carbon Dioxide inC. elegans

    Get PDF
    Different interoceptive systems must be integrated to ensure that multiple homeostatic insults evoke appropriate behavioral and physiological responses. Little is known about how this is achieved. Using C. elegans, we dissect cross-modulation between systems that monitor temperature, O₂ and CO₂. CO₂ is less aversive to animals acclimated to 15°C than those grown at 22°C. This difference requires the AFD neurons, which respond to both temperature and CO₂ changes. CO₂ evokes distinct AFD Ca²⁺ responses in animals acclimated at 15°C or 22°C. Mutants defective in synaptic transmission can reprogram AFD CO₂ responses according to temperature experience, suggesting reprogramming occurs cell autonomously. AFD is exquisitely sensitive to CO₂. Surprisingly, gradients of 0.01% CO₂/second evoke very different Ca²⁺ responses from gradients of 0.04% CO₂/second. Ambient O₂ provides further contextual modulation of CO₂ avoidance. At 21% O₂ tonic signalling from the O₂-sensing neuron URX inhibits CO₂ avoidance. This inhibition can be graded according to O₂ levels. In a natural wild isolate, a switch from 21% to 19% O₂ is sufficient to convert CO₂ from a neutral to an aversive cue. This sharp tuning is conferred partly by the neuroglobin GLB-5. The modulatory effects of O₂ on CO₂ avoidance involve the RIA interneurons, which are post-synaptic to URX and exhibit CO₂-evoked Ca²⁺ responses. Ambient O₂ and acclimation temperature act combinatorially to modulate CO₂ responsiveness. Our work highlights the integrated architecture of homeostatic responses in C. elegans

    Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate

    Get PDF
    Hoffman J, Clarke A, Clark MS, Peck LS. Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate. PLoS ONE. 2013;8(5): e63954.Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive Fst values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales
    corecore