652 research outputs found

    Superradiance by mini black holes with mirror

    Full text link
    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger angular momentum of the black hole. Possibilities of the forming the black-hole bomb at the LHC are discussed.Comment: 20 pages, 2 figures, 7 tables. More discussions. To appear in JHE

    No entropy enigmas for N=4 dyons

    Get PDF
    We explain why multi-centered black hole configurations where at least one of the centers is a large black hole do not contribute to the indexed degeneracies in theories with N=4 supersymmetry. This is a consequence of the fact that such configurations, although supersymmetric, belong to long supermultiplets. As a result, there is no entropy enigma in N=4 theories, unlike in N=2 theories.Comment: 14 page

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    Radiation from a D-dimensional collision of shock waves: first order perturbation theory

    Get PDF
    We study the spacetime obtained by superimposing two equal Aichelburg-Sexl shock waves in D dimensions traveling, head-on, in opposite directions. Considering the collision in a boosted frame, one shock becomes stronger than the other, and a perturbative framework to compute the metric in the future of the collision is setup. The geometry is given, in first order perturbation theory, as an integral solution, in terms of initial data on the null surface where the strong shock has support. We then extract the radiation emitted in the collision by using a D-dimensional generalisation of the Landau-Lifschitz pseudo-tensor and compute the percentage of the initial centre of mass energy epsilon emitted as gravitational waves. In D=4 we find epsilon=25.0%, in agreement with the result of D'Eath and Payne. As D increases, this percentage increases monotonically, reaching 40.0% in D=10. Our result is always within the bound obtained from apparent horizons by Penrose, in D=4, yielding 29.3%, and Eardley and Giddings, in D> 4, which also increases monotonically with dimension, reaching 41.2% in D=10. We also present the wave forms and provide a physical interpretation for the observed peaks, in terms of the null generators of the shocks.Comment: 27 pages, 11 figures; v2 some corrections, including D dependent factor in epsilon; matches version accepted in JHE

    Higher Derivative Extension of 6D Chiral Gauged Supergravity

    Get PDF
    Six-dimensional (1,0) supersymmetric gauged Einstein-Maxwell supergravity is extended by the inclusion of a supersymmetric Riemann tensor squared invariant. Both the original model as well as the Riemann tensor squared invariant are formulated off-shell and consequently the total action is off-shell invariant without modification of the supersymmetry transformation rules. In this formulation, superconformal techniques, in which the dilaton Weyl multiplet plays a crucial role, are used. It is found that the gauging of the U(1) R-symmetry in the presence of the higher-order derivative terms does not modify the positive exponential in the dilaton potential. Moreover, the supersymmetric Minkowski(4) x S^2 compactification of the original model, without the higher-order derivatives, is remarkably left intact. It is shown that the model also admits non-supersymmetric vacuum solutions that are direct product spaces involving de Sitter spacetimes and negative curvature internal spaces.Comment: 32 pages; typos corrected, footnote in conclusions section adde

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Association between regular participation in sports and leisure time behaviors in Brazilian adolescents: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The belief that adolescents engaged in sports increase their overall physical activity level while simultaneously decreasing physical inactivity has been the foundation of many intervention programs in developing countries. The aim of this study was to analyze the association between regular participation in sports and both active behaviors and TV viewing during leisure time.</p> <p>Methods</p> <p>A total of 1752 Brazilian adolescents (812 = male and 940 = female) participated in this study. Regular participation in sports, as well as active behaviors (exemplified by walking or cycling) and TV viewing during leisure time were assessed by means of a questionnaire. The chi-square test analyzed the association between sports practice and leisure time behaviors, and the Poisson regression with robust variance indicated the magnitude of these associations.</p> <p>Results</p> <p>The prevalence of regular participation in sports was 14.8% (95% confidence interval 13.2% to 16.5%). After adjustment for all confounders, participation in sports was associated with, at the highest frequency, cycling (PR = 2.55 [1.80–3.60]) and walking (PR = 2.69 [1.98–3.64]) during leisure time. However, there was not an association between the participation in sports and frequency of TV viewing (PR = 1.28 [0.81–2.02]).</p> <p>Conclusion</p> <p>This study presented data indicating that the regular participation in sports is positively associated with a higher frequency of physically active behaviors during leisure time. However, the results did not support the hypothesis that the engagement in sports necessarily decreases leisure time spent in TV viewing.</p

    Cognitive appraisal of environmental stimuli induces emotion-like states in fish

    Get PDF
    The occurrence of emotions in non-human animals has been the focus of debate over the years. Recently, an interest in expanding this debate to non-tetrapod vertebrates and to invertebrates has emerged. Within vertebrates, the study of emotion in teleosts is particularly interesting since they represent a divergent evolutionary radiation from that of tetrapods, and thus they provide an insight into the evolution of the biological mechanisms of emotion. We report that Sea Bream exposed to stimuli that vary according to valence (positive, negative) and salience (predictable, unpredictable) exhibit different behavioural, physiological and neuromolecular states. Since according to the dimensional theory of emotion valence and salience define a two-dimensional affective space, our data can be interpreted as evidence for the occurrence of distinctive affective states in fish corresponding to each the four quadrants of the core affective space. Moreover, the fact that the same stimuli presented in a predictable vs. unpredictable way elicited different behavioural, physiological and neuromolecular states, suggests that stimulus appraisal by the individual, rather than an intrinsic characteristic of the stimulus, has triggered the observed responses. Therefore, our data supports the occurrence of emotion-like states in fish that are regulated by the individual's perception of environmental stimuli.European Commission [265957 Copewell]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/80029/2011, SFRH/BPD/72952/2010]info:eu-repo/semantics/publishedVersio

    BPS black holes in N=2 D=4 gauged supergravities

    Full text link
    We construct and analyze BPS black hole solutions in gauged N=2, D=4 supergravity with charged hypermultiplets. A class of solutions can be found through spontaneous symmetry breaking in vacua that preserve maximal supersymmetry. The resulting black holes do not carry any hair for the scalars. We demonstrate this with explicit examples of both asymptotically flat and anti-de Sitter black holes. Next, we analyze the BPS conditions for asymptotically flat black holes with scalar hair and spherical or axial symmetry. We find solutions only in cases when the metric contains ripples and the vector multiplet scalars become ghost-like. We give explicit examples that can be analyzed numerically. Finally, we comment on a way to circumvent the ghost-problem by introducing also fermionic hair.Comment: 40 pages, 2 figures; v2 references added; v3 minor changes, published versio

    Extension of non-minimal derivative coupling theory and Hawking radiation in black-hole spacetime

    Full text link
    We study the greybody factor and Hawking radiation with a non-minimal derivative coupling between the scalar field and the curvature in the background of the slowly rotating Kerr-Newman black hole. Our results show that both the absorption probability and luminosity of Hawking radiation of the scalar field increase with the coupling. Moreover, we also find that for the weak coupling η<ηc\eta<\eta_c, the absorption probability and luminosity of Hawking radiation decrease when the black hole's Hawking temperature decreases; while for stronger coupling η>ηc\eta>\eta_c, the absorption probability and luminosity of Hawking radiation increase on the contrary when the black hole's Hawking temperature decreases. This feature is similar to the Hawking radiation in a dd-dimensional static spherically-symmetric black hole surrounded by quintessence \cite{chensong}.Comment: 17 pages, 6 figures, 1 table, Title changed, Appendix changed, accepted by JHE
    corecore