27 research outputs found

    Polymer-polymer Miscibility In Peo/cationic Starch And Peo/hydrophobic Starch Blends

    No full text
    The main purposes were evaluating the influence of different starches on the miscibility with Poly(ethylene oxide) (PEO) and their effects on the spherulite growth rate. Polymer-polymer miscibility in PEO/cationic starch and PEO/hydrophobic starch blends consisting of different w/w ratios (100/0, 95/05, 90/10, 80/20, 70/30, 65/35 and 60/40) was investigated. This analysis was based on the depression in the equilibrium melting temperature (T m 0). By treating the data of thermal analysis (Differential Scanning Calorimetry - DSC) with Nishi-Wang equation, a positive value (0.68) was found for the interaction parameter of PEO/cationic starch. For PEO/hydrophobic starch blends, a negative value (-0.63) was obtained for the interaction parameter. The results suggested that PEO/cationic starch system should be immiscible. However, the system PEO/hydrophobic starch was considered to be miscible in the whole range of studied compositions. Through optical microscopy analysis, it was concluded that the spherulite growth rate is significantly affected by changing the amount and the type of starch as well. © BME-PT.48488499Sanchez, I.C., Bulk and interface thermodynamics of polymer alloys (1983) Annual Review of Materials Science, 13, pp. 387-412. , DOI: 10.1146/annurev.ms.13.080183.002131Utracki, L.A., (1989) Polymer alloys and blends: Thermodynamic and rheology, , Hanser, MunichHu, Y., Sato, H., Zhang, J., Noda, I., Ozaki, Y., Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate) (2008) Polymer, 49, pp. 4204-4210. , DOI: 10.1016/j.polymer.2008.07.031Haddadine-Rahmoun, N., Amrani, F., Arighi, V., Cowie, J.M.G., Interpolymer complexation and thermal behaviour of poly(styrene-co-maleic acid)/poly(vinyl pyrrolidone) mixtures (2008) Thermochimica Acta, 475, pp. 25-32. , DOI: 10.1016/j.tca.2008.06.013Reis, K.C., Pereira, J., Smith, A.C., Carvalho, C.W.P., Wellner, N., Yakimets, I., Characterization of polyhydroxybutyrate- hydroxyvalerate (PHB-HV)/maize starch blend films (2008) Journal of Food Engineering, 89, pp. 361-369. , DOI: 10.1016/j.jfoodeng.2008.04.022Pouteau, C., Baumberger, S., Cathala, B., Dole, P., Lignin-polymer blends: Evaluation of compatibility by image analysis (2004) Comptes Rendus Biologies, 327, pp. 935-943. , DOI: 10.1016/j.crvi.2004.08.008Zeng, M., Sun, X., Wang, Y., Yao, X., Xiao, H., Wang, B., Qi, C., Correlations between the free-volume properties and the miscibility of chitosan/polar polymers blends membranes (2008) Radiation Physics and Chemistry, 77, pp. 1062-1068. , DOI: 10.1016/j.radphyschem.2008.01.008Girotto, C., Cheyns, D., Aernouts, T., Banishoeib, F., Lutsen, L., Cleij, T.J., Vanderzande, D., Heremans, P., Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivatives (2008) Organic Electronics, 9, pp. 740-746. , DOI: 10.1016/j.orgel.2008.05.014Moore, J.A., Kaur, S., Blends of poly(amide-enaminonitrile) with poly(ethylene oxide), poly(4-vinylpyridine), and poly(N-vinylpyrrolidone) (1998) Macromolecules, 31, pp. 328-335. , DOI: 10.1021/ma9701548Meier, R.J., Vibrational spectrosopy: A 'vanishing' discipline? (2005) Chemical Society Reviews, 34, pp. 743-752. , DOI: 10.1039/b503880dStuart, B.H., A Fourier transform Raman spectroscopy study of the crystallisation behaviour of a poly(ether ether ketone)/poly(ether sulphone) blend (1997) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53, pp. 107-110. , DOI: 10.1016/S1386-1425(97)83014-4Crispim, E.G., Rubira, A.F., Muniz, E.C., Solvent effects on the miscibility of PMMA/PVAc blends: II Using two-dimensional NMR method, NOESY (2000) Polymer, 41, pp. 933-945. , DOI: 10.1016/S0032-3861(99)00222-0Fadnis, C., Illiger, S.R., Rao, K.P., Demappa, T., Miscibility studies of HPMC/PVA blends in water by viscosity, density, refractive index and ultrasonic velocity method (2008) Carbohydrate Polymers, 74, pp. 779-782. , DOI: 10.1016/j.carbpol.2008.04.036Nishi, T., Wang, T.T., Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures (1975) Macromolecules, 8, pp. 909-915. , DOI: 10.1021/ma60048a040García-Alonso, A., Jiménez-Escrig, A., Martin-Carrón, N.M., Bravo, L., Calixto, F.S., Assessment of some parameters involved in the gelatinization and retrogration of starch (1999) Food Chemistry, 66, pp. 181-187. , DOI: 10.1016/S0308-8146(98)00261-1Singh, J., Kaur, L., McCarthy, O.J., Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review (2007) Food Hydrocolloids, 21, pp. 1-22. , DOI: 10.1016/j.foodhyd.2006.02.006Scott, G., 'Green' polymers (2000) Polymer Degradation and Stability, 68, pp. 1-7. , DOI: 10.1016/S0141-3910(99)00182-2Wang, X-L., Yang, K-K., Wang, Y-Z., Wang, D-Y., Yang, Z., Crystallization and morphology of a novel biodegradable polymer system: Poly(1,4-dioxan-2- one)/starch blends (2004) Acta Materialia, 52, pp. 4899-4905. , DOI: 10.1016/j.actamat.2004.06.044Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M., Reis, R.L., Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments (2004) Composites Science and Technology, 64, pp. 789-817. , DOI: 10.1016/j.compscitech.2003.09.001Vieira, A.P., Ferreira, P., Coelho, J.F.J., Gil, M.H., Photocrosslinkable starch-based polymers for ophthalmologic drug delivery (2008) International Journal of Biological Macromolecules, 43, pp. 325-332. , DOI: 10.1016/j.ijbiomac.2008.06.002Mehyar, G.F., Liu, Z., Han, J.H., Dynamics of antimicrobial hydrogels in physiological saline (2008) Carbohydrate Polymers, 74, pp. 92-98. , DOI: 10.1016/j.carbpol.2008.01.023Sadeghi, M., Hoosseinzadeh, H., Synthesis of starchpoly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system (2008) Journal of Bioactive and Compatible Polymers, 23, pp. 381-404. , DOI: 10.1177/0883911508093504Salgado, A.J., Coutinho, O.P., Reis, R.L., Novel starch-based scaffolds for bone tissue engineering: Cytotoxicity, cell culture, and protein expression (2004) Tissue Engineering, 10, pp. 465-474. , DOI: 10.1089/107632704323061825Mendes, S.C., Reis, R.L., Bovell, Y.P., Cunha, A.M., van Blitterswijk, C.A., Bruijn, J.D., Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: A preliminary study (2001) Biomaterials, 22, pp. 2057-2064. , DOI: 10.1016/S0142-9612(00)00395-1Sohara, A.K., Parmod, K., Kansal, P., Shishir, S., Effect of cationic starch and long fibered bamboo pulp on the double fold of recycled bagasse paper (2008) Quarterly Journal of Indian Pulp and Paper Technical Journal, 20, pp. 179-184Packhan, D.E., Adhesive technology and sustainability (2009) International Journal of Adhesion and Adhesives, 29, pp. 248-252. , DOI: 10.1016/j.ijadhadh.2008.06.002Mano, J.F., Reis, R.L., Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions (2004) Materials Science and Engineering A, 370, pp. 321-325. , DOI: 10.1016/j.msea.2003.08.088Liao, H.T., Wu, C.S., Preparation and characterization of ternary blends composed of polylactide, poly(α- caprolactone) and starch (2009) Materials Science and Engineering: A, 515, pp. 207-214. , DOI: 10.1016/j.msea.2009.03.003Wu, R.L., Wang, X.L., Li, F., Li, H.Z., Wang, Y.Z., Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid (2009) Bioresource Technology, 100, pp. 2569-2574. , DOI: 10.1016/j.biortech.2008.11.044Mano, J.F., Koniarova, D., Reis, R.L., Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability (2003) Journal of Materials Science: Materials in Medicine, 14, pp. 127-135. , DOI: 10.1023/A:1022015712170Hoffmann, B., Volkmer, E., Kokott, A., Weber, M., Hamisch, S., Schieker, M., Mutschler, W., Ziegler, G., A new biodegradable bone wax substitute with the potential to be used as a bone filling material (2007) Journal of Materials Chemistry, 17, pp. 4028-4033. , DOI: 10.1039/b707992nLee, K.Y., Yuk, S.H., Polymeric protein delivery systems (2007) Progress in Polymer Science, 32, pp. 669-697. , DOI: 10.1016/j.progpolymsci.2007.04.001Nagata, M., Yamamoto, Y., Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels (2008) Reactive and Functional Polymers, 68, pp. 915-921. , DOI: 10.1016/j.reactfunctpolym.2008.01.003Salmaso, S., Semenzato, A., Bersani, S., Matricardi, P., Rossi, F., Caliceti, P., Cyclodextrin/PEG based hydrogels for multi-drug delivery (2007) International Journal of Pharmaceutics, 345, pp. 42-50. , DOI: 10.1016/j.ijpharm.2007.05.035Kuo, Y.C., Ku, I.N., Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds (2008) Biomacromolecules, 9, pp. 2662-2669. , DOI: 10.1021/bm800651rReignier, J., Huneault, M.A., Preparation of interconnected poly(α-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching (2006) Polymer, 47, pp. 4703-4717. , DOI: 10.1016/j.polymer.2006.04.029Hou, Q., Grijpma, D.W., Feijen, J., Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique (2003) Biomaterials, 24, pp. 1937-1947. , DOI: 10.1016/S0142-9612(02)00562-8Bozukova, D., Pagnoulle, C., Pauw-Gillet, M.C., Desbief, S., Lazzaroni, R., Ruth, N., Jérome, R., Jérome, C., Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings (2007) Biomacromolecules, 8, pp. 2379-2383. , DOI: 10.1021/bm0701649Chen, H., Zhang, Z., Chen, Y., Brook, M.A., Sheardown, H., Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide) (2005) Biomaterials, 26, pp. 2391-2399. , DOI: 10.1016/j.biomaterials.2004.07.068Unsworth L.D.Sheardown, H., Brash, J.L., Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: Adsorption of proteins from plasma studied by radiolabelling and immunoblotting (2005) Biomaterials, 26, pp. 5927-5933. , DOI: 10.1016/j.biomaterials.2005.03.010Archambault, J.G., Brash, J.L., Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): Effects of protein size and charge (2004) Colloids and Surfaces B: Biointerfaces, 33, pp. 111-120. , DOI: 10.1016/j.colsurfb.2003.09.004Willerth, S.M., Sakiyama-Elbert, S.E., Approaches to neural tissue engineering using scaffolds for drug delivery (2007) Advanced Drug Delivery Reviews, 59, pp. 325-338. , DOI: 10.1016/j.addr.2007.03.014Popelka, Ơ., Machovå, L., Rypåcek, F., Adsorption of poly(ethylene oxide)-block-polylactide copolymers on polylactide as studied by ATR-FTIR spectroscopy (2007) Journal of Colloid and Interface Science, 308, pp. 291-299. , DOI: 10.1016/j.jcis.2006.12.022Deitzel, J.M., Keinmeyer, J.D., Hirnonen, J.K., Tan, N.C.B., Controlled deposition of electrospun poly(ethylene oxide) fibers (2001) Polymer, 42, pp. 8163-8170. , DOI: 10.1016/S0032-3861(01)00336-6Hoffman, J.D., Weeks, J.J., Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene (1962) Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 66, pp. 13-28Pereira, A.G.B., Gouveia, R.F., de Carvalho, G.M., Rubira, A.F., Muniz, E.C., Polymer blends based on PEO and starch: Miscibility and spherulite growth rate evaluated through DSC and optical microscopy (2009) Materials Science and Engineering: C, 29, pp. 499-504. , DOI: 10.1016/j.msec.2008.09.009Wang, P.X., Wu, X.L., Hua, X.D., Kun, X., Ying, T., Bing, D.X., Bo, L.W., Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane-THF-water media (2009) Carbohydrate Research, 344, pp. 851-855. , DOI: 10.1016/j.carres.2009.02.023Baek, K., Yang, J.S., Kwon, T.S., Yang, J.W., Cationic starch-enhanced ultrafiltration for Cr(VI) removal (2007) Desalination, 206, pp. 245-250. , DOI: 10.1016/j.desal.2006.03.568Qiao, L., Gu, Q-M., Cheng, H.N., Enzyme-catalyzed synthesis of hydrophobically modified starch (2006) Carbohydrate Polymers, 66, pp. 135-140. , DOI: 10.1016/j.carbpol.2006.02.033Coleman, M.M., Painter, P.C., Hydrogen bonded polymer blends (1995) Progress in Polymer Science, 20, pp. 1-59. , DOI: 10.1016/0079-6700(94)00038-4Rim, P.B., Runt, J.P., Melting point depression in crystalline/compatible polymer blends (1984) Macromolecules, 17, pp. 1520-1526. , DOI: 10.1021/ma00138a017Mark, J.E., (1999) Polymer data handbook, , Oxford University Press, New YorkChow, T.S., Miscible blends and block copolymers. Crystallization, melting and interaction (1990) Macromolecules, 23, pp. 333-337. , DOI: 10.1021/ma00203a057Alfonso, G.C., Russell, T.P., Kinetics of crystallization in semicrystalline/amorphous polymer mixtures (1986) Macromolecules, 19, pp. 1143-1152. , DOI: 10.1021/ma00158a036Crispim, E.G., Rubira, A.F., Muniz, E.C., Solvent effects on the miscibility of poly(methyl methacrylate)/ poly(vinyl acetate) blends: I: Using differential scanning calorimetry and viscometry techniques (1999) Polymer, 40, pp. 5129-5135. , DOI: 10.1016/S0032-3861(98)00653-3Cabane, B., Vuilleumier, R., The physics of liquid water (2005) Comptes Rendus Geoscience, 337, pp. 159-171. , DOI: 10.1016/j.crte.2004.09.018Sperling, L.H., (2006) Introduction to physical polymer science, , Wiley, Bethlehe

    Morphology Of Temperature-sensitive And Ph-responsive Ipn-hydrogels For Application As Biomaterial For Cell Growth [morfologia De Hidrogéis-ipn Termo-sensíveis E Ph-responsivos Para Aplica ção Como Biomaterial Na Cultura De Células]

    No full text
    In the present investigation, hydrogels with pH-responsive and temperature-sensitive properties were obtained by formation of alginate-Ca network inside the PNIPAAm network resulting in an interpenetrated network system (IPN). From scanning electron microscopy (SEM) images and water uptake (WU) tests one observed that IPN hydrogels exhibited a drastic shrinking when heated above 30-35°C. The shrinking resulted in decreased average pore size, thus affect the hydrogel morphology significantly. In the pH range studied, IPN hydrogels showed significant pH dependence, which was attributed to the charged alginate groups. The results indicated that the pH-responsiveness and temperature-dependence of alginate and PNIPAAm, respectively, were preserved in IPN hydrogels. In addition, such hydrogels become less deformable when subjected to compressive stress. These hydrogels presented porous morphology that may be tuned by controlling the temperature, and this makes them attractive for applications as biomaterial in cell growth.192105110Wang, X., Spencer, G., (1998) Polymer, 39, p. 2759Meeuse, B.J.D., (1962) Composition of Cell and Metabolic Products, , University of Washington, WashingtonDraget, K.I., SkjĂ„k-Braek, G., SmidsrĂžd, O., (1997) Inter. J. Biol. Macromol., 21, p. 47Halder, A., Maiti, S., Sa, B., (2005) Inter. J. Pharm., 302, p. 84Shapiro, L., Cohen, S., (1997) Biomaterials, 18, p. 583Li, S., Wang, X.T., Zhang, X.B., Yang, R.J., Zhang, H.Z., Zhu, L.Z., Hou, X.P., (2002) J. Control. Release, 84, p. 87Hurteaux, R., Edwards-LĂ©vy, F., Laurent-Maquin, D., LĂ©vy, M.C., (2005) Eur. J. Pharm. Sci., 24, p. 187Chretien, C., Chaumeil, J.C., (2005) Inter. J. Pharm., 304, p. 18Liu, L., Sheardown, H., (2005) Biomaterials, 26, p. 233Cho, J.H., Kim, S.H., Park, K.D., Jung, M.C., Yang, W.I., Han, S.W., Noh, J.Y., Lee, J.W.J.W., (2004) Biomaterials, 25, p. 5743Kavanagh, C.A., Rochev, Y.A., Gallagher, W.M., Dawson, K.A., Keenan, A.K., (2004) Pharmacol & Therapeutics, 102, p. 1Guilherme, M.R., Reis, A.V., Rubira, A.F., Muniz, E.C., (2005), www.inpi.gov.br, PI 0503651-8, BrazilGuilherme, M.R., Campese, G.M., Radovanovic, E., Rubira, A.F., Tambourgi, E.B., Muniz, E.C., (2006) J. Membrane Sci., 275, p. 187Schild, H.G., (1992) Prog. Polym. Sci., 17, p. 163Takigawa, T., Yamawaki, T., Takahashia, K., Masuda, T., (1997) Polym. Gels Networks, 5, p. 585Athawale, V.D., Raut, S.S., (2002) Eur. Polym. J., 38, p. 2033Jin, S.P., Liu, M.Z., Chen, S.L., Bian, F.L., Chen, Y., Wang, B., Zhan, F.L., Liu, S.X., (2007) Acta Physico-Chimica Sinica, 23, p. 438Teli, S.B., Gokavi, G.S., Aminabhavi, T.M., (2007) Separ. Purif. Tech., 56, p. 150Shin, Y., Kim, K.S., Kim, B., (2008) Polymer-Korea, 32, p. 421Biswal, D., Hilt, J.Z., (2006) Polymer, 47, p. 7355Miyata, T., Asami, N., Uragami, T., (1999) Nature, 399, p. 766Omichi, H., (1995) Nucl. Instrum. Meth. B, 105, p. 302Moura, M.R., Rubira, A.F., Muniz, E.C., (2008) PolĂ­m. Ciěncia Tecnol, 18, p. 132Ouwerx, C., Velings, N., Mestdagh, M.M., Axelos, M.A.V., (1998) Polym. Gels Netw, 6, p. 293Lee, K.Y., Rowley, J.A., Eiselt, P., Moy, E.M., Bouhadir, K.H., Mooney, D.J., (2000) Macromolecules, 33, p. 4291Paulino, A.T., Campese, G.M., FĂĄvaro, S.L., Guilherme, M.R., Tambourgi, E.B., Muniz, E.C., (2007) E Polymer, 122, p. 1Moura, M.R., Guilherme, M.R., Campese, G.M., Radovanovic, E., Rubira, A.F., Muniz, E.C., (2005) Eur. Polym. J., 41, p. 284

    Toxic Effects Of Dietary Of Al3+ Ions In Tilapias (oreochromis Niloticus) And Protective Effect Of Zn2+

    No full text
    The lethal effects of aluminum ion (Al3+) in tilapia (Oreochromis niloticus) raised in concrete tanks were investigated. Tilapias were fed daily with commercial feed enriched with known concentrations of Al3+ and analyzed by differential pulse anodic stripping voltammetry (DPASV). The concentrations of Al3+ in feces, water, muscle tissue, viscera, and heads were determined every 3 months for a period of 365 days. The Tilapia head was the most affected tissue by Al3+. In general, Al3{thorn} bioaccumulation reached the lethal dose (LD50) after 335 days of experiment as follows: 34.9mg kg -1 (muscle tissue), 88.2mg kg-1 (viscera), and 126.9mg kg-1 (head without gills). After determining Cu2+, Zn2+, and Ca2+ by absorption spectrometry, a decrease in the Ca2+ concentration was noted in the head during the experimental period. These observations were associated with the occurrence of a decalcification in the bone tissue in the presence of Al3+. In contrast, it was found that Zn2+ ions may act as a protective agent against Al3+-induced contamination. © 2011 Taylor & Francis.93192101Buchet, J.P., Lison, D., Ruggeri, M., Foa, V., Elia, G., Maugeri, S., Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood (1996) Archives of Toxicology, 70, pp. 773-778Gensemer, R.W., Playle, R.G., The bioavailability and toxicity of aluminum in aquatic environments (1999) Critical Reviews In Environmental Science and Technology, 29, pp. 315-450Greenberg, A.E., Eaton, A.D., Clescerl, L.S., (2005) Standard Methods For Examination of Water & Wastewater, , Washington, DC: American Public Health AssociationHerkovits, J., Perez-Coll, C.S., Herkovits, F.D., Evaluation of nickel-zinc interactions by means of bioassays with amphibian embryos (2000) Ecotoxicology and Environmental Safety, 45, pp. 266-273Hirano, T., Interleukin-6 (1998) The Cytokine Handbook, pp. 197-227. , ed. A.E. Thomson, San Diego: Academic PressKaur, A., Joshi, K., Minzc, R.W., Gill, K.D., Neurofilament phosphorylation and disruption: A possible mechanism of chronic aluminium toxicity in Wistar rats (2006) Toxicology, 219, pp. 1-10Kuiper, R.V., Van Den Brandhof, E.J., Leonards, P.E.G., van der Ven, L.T.M., Wester, P.W., Vos, J.G., Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test (2007) Archives of Toxicology, 81, pp. 1-9Lydersen, E., Lofgren, S., Arnesen, R.T., Metals in Scandinavian surface waters: Effects of acidification, liming, and potential re-acidification (2002) Critical Reviews In Environmental Science and Technology, 32, pp. 273-295Merian, E., Anke, M., Ihnat, M., Stoeppler, M., (2004) Metals and Their Compounds In the Environment: Occurrence, Analysis and Biological Relevance, , New York: John Wiley & SonsNogami, E.M., Kimura, C.C.M., Rodrigues, C., Malaguti, A.R., Lenzi, E., Nozaki, J., Effects of cadmium and its bioconcentration in tilapia Oreochromis niloticus (2000) Ecotoxicology and Environmental Safety, 45, pp. 291-295Ohlweiler, A.O., (1985) Separation Methods. Analytical Chemistry Quantitative, , Rio de Janeiro: Livros Tecnicos e Cienti{dotless}ficosPaulino, A.T., Santos, L.B., Nozaki, J., Protective action of zinc against lead poisoning in tilapia Oreochromis niloticus (2007) Toxicology & Environmental Chemistry, 98, pp. 363-370Paulino, A.T., Tessari, J.A., Nogami, E.M., Lenzi, E., Nozaki, J., Lipid increase by lead accumulation in tilapia Oreochromis niloticus (2005) Bulletin of Environmental Contamination and Toxicology, 75, pp. 42-49Paulino, A.T., Vargas, A.M.M., Santos, L.B., Nozaki, J., Tambourgi, E.B., Muniz, E.C., Square wave voltammetry in the determination of Ni2{thorn} and Al3{thorn} in biological samples (2008) Analytical Sciences, 24, pp. 1443-1447Schintu, M., Meloni, P., Contu, A., Aluminum fractions in drinking water from reservoirs (2000) Ecotoxicology and Environmental Safety, 46, pp. 29-33Shaw, M.J., Haddad, P.R., The determination of trace metal pollutants in environmental matrices using ion chromatography (2004) Environment International, 30, pp. 403-431Smolders, A.J.P., Lock, R.A.C., Van der Velde, G., Medina Hoyos, R.I., Roelofs, J.G.M., Effects of mining activities on heavy metal concentrations in water, sediment, and macro invertebrates in different reaches of the Pilcomayo River, South America (2003) Archives of Environmental Contamination and Toxicology, 44, pp. 314-323Srinivasan, P.T., Viraraghavan, T., Characterization and concentration profile of aluminium during drinking-water treatment (2002) Water SA, 28, pp. 99-106Tapiero, H., Tew, K.D., Trace elements in human physiology and pathology: Zinc and metallothioneins (2003) Biomedicine & Pharmacotherapy, 57, pp. 399-411Tripathi, R.M., Mahapatra, S., Raghunath, R., Kumar, A.V., Sadasivan, S., Daily intake of aluminium by adult population of Mumbai, India (2002) Science of the Total Environment, 299, pp. 73-77Vargas, A.M.M., Paulino, A.T., Nozaki, J., Effects of daily nickel intake on the bio-accumulation, body weight and length in tilapia (Oreochromis niloticus) (2009) Toxicological and Environmental Chemistry, 91, pp. 751-759Xu, P., Huang, S., Wang, Z., Lagos, G., Daily intakes of copper, zinc and arsenic in drinking water by population of Shanghai, China (2006) Science of the Total Environment, 362, pp. 50-5

    Square Wave Voltammetry In The Determination Of Ni2+ And Al 3+ In Biological Samples

    Get PDF
    In this contribution, the amounts of Ni (nickel) and Al (aluminum) in tilapias (Oreochromis niloticus) were determined using square wave voltammetry (SWV) with glassy carbon working microelectrode with a mercury thin film, platinum counter electrode, and Ag/AgCl reference electrode. Ni was studied through the formation of the dimethylglyoxime-Ni (Ni-DMG) complex, while Al was studied through the formation of the Alizarin R-Al complex. The detection limit found for Ni-DMG and Alizarin R-Al complexes were 1.70 × 10-7 and 1.0 × 10-8 mol L-1, respectively. The voltammetric anodic curves for the Alizarin R-Al complex were recorded over the potential range from -0.8 to -0.05 V while the voltammetric cathodic curve for the Ni-DMG complex was recorded over the potential range from -0.7 to -1.2 V. These methods detected low concentrations of Ni and Al in biological samples efficiently. 2008 © The Japan Society for Analytical Chemistry.241114431447Paulino, A.T., Tessari, J.A.A., Nogami, E.M., Lenzi, E., Nozaki, J., (2005) Bull. Environ. Contam. Toxicol, 75, p. 42Merian, E., Anke, M., Ihnat, M., Stoeppler, M., (2004) Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, , John Wiley & Sons, New YorkPane, E.F., Richards, J.G., Wood, C.M., (2003) Aquat. Toxicol, 63, p. 65GonzĂĄlez, P., CortĂ­nez, V.A., FontĂĄn, C.A., (2002) Talanta, 58, p. 679(2005) Resumen de Salud PĂșblica, , www.atsdr.cdc.gov/es/phs/es_phs15.pdf, Agency for Toxic Substances & Disease Registry, NĂ­quel. CAS, 7440-02-0, AugustBuchet, J.P., Lison, D., Ruggeri, M., Foa, V., Elia, G., Maugeri, S., (1996) Arch. Toxicol, 70, p. 773Gauthier, E., Fortier, I., Courchesne, F., Pepin, P., Mortimer, J., Gauvreau, D., (2000) Environ. Res, 84, p. 234Yousef, M.I., (2004) Toxicology, 199, p. 47Exley, C., (1996) J. Fish Biol, 48, p. 706Paulino, A.T., Santos, L.B., Nozaki, J., (2007) Toxicol. Environ. Chem, 87, p. 363Shaw, M.J., Haddad, P.R., (2004) Environ. Int, 30, p. 403Ohlweiler, A.O., Separation Methods. Analytical Chemistry Quantitative, , Livros TĂ©cnicos e CiĂȘntificos, Rio de JaneiroDel Pozo, J.A., Garcia, A.C., Blanco, A., (1993) Anal. Chim. Acta, 273, p. 101Downard, A.J., Powell, H.K.J., Xu, S., (1991) Anal. Chim. Acta, 251, p. 157Opydo, J., (1997) Talanta, 44, p. 1081Di, J., Bi, S., Yang, T., Zhang, M., (2004) Sens. Actuators, 99, p. 468Othman, A.F., (2003) Microchem. J, 75, p. 119Morfobos, M., Economou, A., Voulgaropoulos, A., (2004) Anal. Chim. Acta, 519, p. 57Korolczuk, M., Tyszczyk, K., Grabarxzyk, M., (2005) Electrochem. Commun, 7, p. 1185Morais, S., Pereira, M.C., (2000) J. Trace. Elem. Med. Biol, 14, p. 48Julshamn, K., Andersen, K., Willassen, Y., Braekkan, O.R., (1978) Anal. Biochem, 88, p. 552Qiong, L., Lirong, W., Danli, X., Guanghan, L., (2006) Food Chem, 97, p. 176Arancibia, V., Muñoz, C., (2007) Talanta, 73, p. 546Simionato, J.I., Paulino, A.T., Garcia, J.C., Nozaki, J., (2006) Polym. Int, 55, p. 1243Paulino, A.T., Minasse, F.A.S., Guilherme, M.R., Reis, A.V., Muniz, E.C., Nozaki, J., (2006) J. Colloid Interface Sci, 301, p. 479Paulino, A.T., Guilherme, M.R., Reis, A.V., Tambourgi, E.B., Nozaki, J., Muniz, E.C., (2007) J. Hazard. Mater, 147, p. 139Paulino, A.T., Santos, L.B., Nozaki, J., (2008) React. Funct. Polym, 68, p. 63
    corecore