5 research outputs found

    NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans

    No full text
    Tuberculosis (TB) has substantial mortality worldwide with 5-10% of those exposed progressing to active TB disease. Studies in mice and humans indicate that the inducible nitric oxide synthase (iNOS) molecule plays an important role in immune response to TB. A mixed case-control association study of individuals with TB, relatives, or close contact controls was performed in 726 individuals (279 case and 166 control African-Americans; 198 case and 123 control Caucasians). Thirty-nine single nucleotide polymorphisms (SNPs) were selected from the NOS2A gene for single SNP, haplotype, and multilocus interaction analyses with other typed candidate genes using generalized estimating equations. In African-Americans, ten NOS2A SNPs were associated with TB. The strongest associations were observed at rs2274894 (odds ratio (OR) = 1.84, 95% confidence interval (CI) [1.23-2.77], p = 0.003) and rs7215373 (OR 1.67, 95% CI [1.17-2.37], p = 0.004), both of which passed a false discovery rate (FDR) correction for multiple comparisons (q*=0.20). The strongest gene-gene interactions were observed between NOS2A rs2248814 and IFNGR1 rs1327474 (p = 0.0004) and NOS2A rs944722 and IFNGR1 rs1327474 (p = 0.0006). Three other SNPs in NOS2A interacted with TLR4 rs5030729 and five other NOS2A SNPs interacted with IFNGR1 rs1327474. No significant associations were observed in Caucasians. These results suggest that NOS2A variants may contribute to TB susceptibility, particularly in individuals of African descent, and may act synergistically with SNPs in TLR4 and IFNGR1

    Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans

    No full text
    Tuberculosis (TB) is a global public health problem and a source of preventable deaths each year, with 8.8 million new cases of TB and 1.6 million deaths worldwide in 2005. Approximately, 10% of infected individuals develop pulmonary or extrapulmonary TB, suggesting that host defense factors influence development of active disease. Toll-like receptor’ ( TLR ) polymorphisms have been associated with regulation of TLR expression and development of active TB. In the present study, 71 polymorphisms in TLR1 , TLR2 , TLR4 , TLR6 , and TLR9 were examined from 474 (295 cases and 179 controls) African-Americans, 381 (237 cases and 144 controls) Caucasians, and from 667 (321 cases and 346 controls) Africans from Guinea-Bissau for association with pulmonary TB using generalized estimating equations and logistic regression. Statistically significant associations were observed across populations at TLR9 and TLR2 . The strongest evidence for association came at an insertion (I)/deletion (D) polymorphism (−196 to −174) in TLR2 that associated with TB in both Caucasians (II vs. ID&DD, OR=0.41 [95% CI 0.24–0.68], p =0.0007) and Africans (II vs. ID&DD, OR=0.70 [95% CI 0.51–0.95], p =0.023). Our findings in three independent population samples indicate that variations in TLR2 and TLR9 might play important roles in determining susceptibility to TB
    corecore