7,320 research outputs found
Noise suppression due to long-range Coulomb interaction: Crossover between diffusive and ballistic transport regimes
We present a Monte Carlo analysis of shot-noise suppression due to long-range
Coulomb interaction in semiconductor samples under a crossover between
diffusive and ballistic transport regimes. By varying the mean time between
collisions we find that the strong suppression observed under the ballistic
regime persists under quasi-ballistic conditions, before being washed out when
a complete diffusive regime is reached.Comment: RevTex, 3 pages, 4 figures, minor correction
Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing
Gas chemical sensors are strongly affected by drift, i.e., changes in sensors' response with time, that may turn statistical models commonly used for classification completely useless after a period of time. This paper presents a new classifier that embeds an adaptive stage able to reduce drift effects. The proposed system exploits a state-of-the-art evolutionary strategy to iteratively tweak the coefficients of a linear transformation able to transparently transform raw measures in order to mitigate the negative effects of the drift. The system operates continuously. The optimal correction strategy is learnt without a-priori models or other hypothesis on the behavior of physical-chemical sensors. Experimental results demonstrate the efficacy of the approach on a real problem
New Stellar Cross Sections and The "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars"
Since April 2005 a regularly updated stellar neutron cross section
compilation is available online at http://nuclear-astrophysics.fzk.de/kadonis.
This online-database is called the "Karlsruhe Astrophysical Database of
Nucleosynthesis in Stars" project and is based on the previous Bao et al.
compilation from the year 2000. The present version \textsc{KADoNiS} v0.2
(January 2007) includes recommended cross sections for 280 isotopes between
H and Po and 75 semi-empirical estimates for isotopes without
experimental information. Concerning stellar cross sections of the
32 stable, proton-rich isotopes produced by the process experimental
information is only available for 20 isotopes, but 9 of them have rather large
uncertainties of 9%. The first part of a systematic study of stellar
cross sections of the -process isotopes Se, Sr,
Pd, Te, Ba, Ba, Dy, and Hf is
presented. In another application \textsc{KADoNiS} v0.2 was used for an
modification of a reaction library of Basel university. With this modified
library -process network calculations were carried out and compared to
previous results.Comment: Proceedings "International Conference on Nuclear Data for Science and
Technology 2007", Nice/ Franc
Adjoint-based formulation for computing derivatives with respect to bed boundary positions in resistivity geophysics
In inverse geophysical resistivity problems, it is common to optimize for specific resistivity values and bed boundary positions, as needed, for example, in geosteering applications. When using gradient-based inversion methods such as Gauss-Newton, we need to estimate the derivatives of the recorded measurements with respect to the inversion parameters. In this article, we describe an adjoint-based formulation for computing the derivatives of the electromagnetic fields withrespect to the bed boundary positions. The key idea to obtain this adjoint-based formulation is to separate the tangential and normal components of the field, and treat them differently. We then apply this method to a 1.5D borehole resistivity problem. We illustrate its accuracy and some of its convergence properties via numerical experimentation by comparing the results obtained with our proposed adjoint-based method vs. both the analytical results when available and a finite differences approximation of the derivative
Stellar (n,gamma) cross sections of p-process isotopes PartI: 102Pd, 120Te, 130,132Ba,and 156Dy
We have investigated the (n,gamma) cross sections of p-process isotopes with
the activation technique. The measurements were carried out at the Karlsruhe
Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a
Maxwellian neutron distribution of kT = 25 keV. Stellar cross section
measurements are reported for the light p-process isotopes 102Pd, 120Te,
130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W,
184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to
p-process energies by including information from evaluated nuclear data
libraries. The results are compared to standard Hauser-Feshbach models
frequently used in astrophysics.Comment: 13 pages, 4 figure
Neural network architecture optimization using automated machine learning for borehole resistivity measurements
Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN.PDC2021-121093-I00
IA4TES
RYC2021-032853-
ac Losses in a Finite Z Stack Using an Anisotropic Homogeneous-Medium Approximation
A finite stack of thin superconducting tapes, all carrying a fixed current I,
can be approximated by an anisotropic superconducting bar with critical current
density Jc=Ic/2aD, where Ic is the critical current of each tape, 2a is the
tape width, and D is the tape-to-tape periodicity. The current density J must
obey the constraint \int J dx = I/D, where the tapes lie parallel to the x axis
and are stacked along the z axis. We suppose that Jc is independent of field
(Bean approximation) and look for a solution to the critical state for
arbitrary height 2b of the stack. For c<|x|<a we have J=Jc, and for |x|<c the
critical state requires that Bz=0. We show that this implies \partial
J/\partial x=0 in the central region. Setting c as a constant (independent of
z) results in field profiles remarkably close to the desired one (Bz=0 for
|x|<c) as long as the aspect ratio b/a is not too small. We evaluate various
criteria for choosing c, and we show that the calculated hysteretic losses
depend only weakly on how c is chosen. We argue that for small D/a the
anisotropic homogeneous-medium approximation gives a reasonably accurate
estimate of the ac losses in a finite Z stack. The results for a Z stack can be
used to calculate the transport losses in a pancake coil wound with
superconducting tape.Comment: 21 pages, 17 figures, accepted by Supercond. Sci. Techno
Effect of long-range Coulomb interaction on shot-noise suppression in ballistic transport
We present a microscopic analysis of shot-noise suppression due to long-range
Coulomb interaction in semiconductor devices under ballistic transport
conditions. An ensemble Monte Carlo simulator self-consistently coupled with a
Poisson solver is used for the calculations. A wide range of injection-rate
densities leading to different degrees of suppression is investigated. A sharp
tendency of noise suppression at increasing injection densities is found to
scale with a dimensionless Debye length related to the importance of
space-charge effects in the structure.Comment: RevTex, 4 pages, 4 figures, minor correction
- …