159 research outputs found

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy

    Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure

    Get PDF
    Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly

    Differences in the Pathways of Proteins Unfolding Induced by Urea and Guanidine Hydrochloride: Molten Globule State and Aggregates

    Get PDF
    It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the pathway of protein denaturation by GdnHCl, but not by urea. So what was previously believed to be the molten globule state in the pathway of protein denaturation by GdnHCl, in reality, for some proteins represents the aggregates of partially folded molecules

    The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface

    Get PDF
    Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the beta-myosin heavy chain (MHC) remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events that ultimately lead to the clinical phenotype.Here we examine the structural consequences of the R403Q mutation in a recombinant smooth muscle myosin subfragment (S1), whose kinetic features have much in common with slow beta-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in the presence (ADP) and absence (apo) of nucleotide by electron cryomicroscopy and image analysis. We observed that the mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe disruption of the actin-myosin interaction at the interface.These results provide structural evidence that disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state

    Direct Regulation of Striated Muscle Myosins by Nitric Oxide and Endogenous Nitrosothiols

    Get PDF
    , both through activation of guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides directly regulate striated muscle myosins..These data show that nitrosylation signaling acts as a molecular “gear shift” for myosin—an altogether novel mechanism by which striated muscle and cellular biomechanics may be regulated

    Ants defend coffee from berry borer colonization

    Full text link
    Ants frequently prevent herbivores from damaging plants. In agroecosystems they may provide pest control services, although their contributions are not always appreciated. Here we compared the ability of eight ant species to prevent the coffee berry borer from colonizing coffee berries with a field exclusion experiment. We removed ants from one branch (exclusion) and left ants to forage on a second branch (control) before releasing 20 berry borers on each branch. After 24 h, six of eight species had significantly reduced the number of berries bored by the berry borer compared to exclusion treatment branches. While the number of berries per branch was a significant covariate explaining the number of berries bored, ant activity (that varied greatly among species) was not a significant factor in models. This study is the first field experiment to provide evidence that a diverse group of ant species limit the berry borer from colonizing coffee berries. © 2013 International Organization for Biological Control (IOBC)

    Vinculin controls talin engagement with the actomyosin machinery

    Get PDF
    The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs

    Disease-Related Cardiac Troponins Alter Thin Filament Ca2+ Association and Dissociation Rates

    Get PDF
    The contractile response of the heart can be altered by disease-related protein modifications to numerous contractile proteins. By utilizing an IAANS labeled fluorescent troponin C, , we examined the effects of ten disease-related troponin modifications on the Ca2+ binding properties of the troponin complex and the reconstituted thin filament. The selected modifications are associated with a broad range of cardiac diseases: three subtypes of familial cardiomyopathies (dilated, hypertrophic and restrictive) and ischemia-reperfusion injury. Consistent with previous studies, the majority of the protein modifications had no effect on the Ca2+ binding properties of the isolated troponin complex. However, when incorporated into the thin filament, dilated cardiomyopathy mutations desensitized (up to 3.3-fold), while hypertrophic and restrictive cardiomyopathy mutations, and ischemia-induced truncation of troponin I, sensitized the thin filament to Ca2+ (up to 6.3-fold). Kinetically, the dilated cardiomyopathy mutations increased the rate of Ca2+ dissociation from the thin filament (up to 2.5-fold), while the hypertrophic and restrictive cardiomyopathy mutations, and the ischemia-induced truncation of troponin I decreased the rate (up to 2-fold). The protein modifications also increased (up to 5.4-fold) or decreased (up to 2.5-fold) the apparent rate of Ca2+ association to the thin filament. Thus, the disease-related protein modifications alter Ca2+ binding by influencing both the association and dissociation rates of thin filament Ca2+ exchange. These alterations in Ca2+ exchange kinetics influenced the response of the thin filament to artificial Ca2+ transients generated in a stopped-flow apparatus. Troponin C may act as a hub, sensing physiological and pathological stimuli to modulate the Ca2+-binding properties of the thin filament and influence the contractile performance of the heart

    The structure of the C-terminal actin-binding domain of talin

    Get PDF
    Talin is a large dimeric protein that couples integrins to cytoskeletal actin. Here, we report the structure of the C-terminal actin-binding domain of talin, the core of which is a five-helix bundle linked to a C-terminal helix responsible for dimerisation. The NMR structure of the bundle reveals a conserved surface-exposed hydrophobic patch surrounded by positively charged groups. We have mapped the actin-binding site to this surface and shown that helix 1 on the opposite side of the bundle negatively regulates actin binding. The crystal structure of the dimerisation helix reveals an antiparallel coiled-coil with conserved residues clustered on the solvent-exposed face. Mutagenesis shows that dimerisation is essential for filamentous actin (F-actin) binding and indicates that the dimerisation helix itself contributes to binding. We have used these structures together with small angle X-ray scattering to derive a model of the entire domain. Electron microscopy provides direct evidence for binding of the dimer to F-actin and indicates that it binds to three monomers along the long-pitch helix of the actin filament
    corecore