386 research outputs found
Left atrial systolic force in hypertensive patients with left ventricular hypertrophy: the LIFE Study.
Electrocardiographic and Echocardiographic Detection of Myocardial Infarction in Patients with Left-Ventricular Hypertrophy: the LIFE Study
Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: The EnligHTN I trial
Aims: Catheter-based renal artery sympathetic denervation has emerged as a novel therapy for treatment of patients with drug-resistant hypertension. Initial studies were performed using a single electrode radiofrequency catheter, but recent advances in catheter design have allowed the development of multi-electrode systems that can deliver lesions with a pre-determined pattern. This study was designed to evaluate the safety and efficacy of the EnligHTN™ multi-electrode system. Methods and results: We conducted the first-in-human, prospective, multi-centre, non-randomized study in 46 patients (67% male, mean age 60 years, and mean baseline office blood pressure 176/96 mmHg) with drug-resistant hypertension. The primary efficacy objective was change in office blood pressure from baseline to 6 months. Safety measures included all adverse events with a focus on the renal artery and other vascular complications and changes in renal function. Renal artery denervation, using the EnligHTN™ system significantly reduced the office blood pressure from baseline to 1, 3, and 6 months by −28/10, −27/10 and −26/10 mmHg, respectively (P < 0.0001). No acute renal artery injury or other serious vascular complications occurred. Small, non-clinically relevant, changes in average estimated glomerular filtration rate were reported from baseline (87 ± 19 mL/min/1.73 m2) to 6 months post-procedure (82 ± 20 mL/min/1.73 m2). Conclusion: Renal sympathetic denervation, using the EnligHTN™ multi-electrode catheter results in a rapid and significant office blood pressure reduction that was sustained through 6 months. The EnligHTN™ system delivers a promising therapy for the treatment of drug-resistant hypertension.Stephen G. Worthley, Costas P. Tsioufis, Matthew I. Worthley, Ajay Sinhal, Derek P. Chew, Ian T. Meredith, Yuvi Malaiapan, and Vasilios Papademetrio
Gain without population inversion in V-type systems driven by a frequency-modulated field
We obtain gain of the probe field at multiple frequencies in a closed
three-level V-type system using frequency modulated pump field. There is no
associated population inversion among the atomic states of the probe
transition. We describe both the steady-state and transient dynamics of this
system. Under suitable conditions, the system exhibits large gain
simultaneously at series of frequencies far removed from resonance. Moreover,
the system can be tailored to exhibit multiple frequency regimes where the
probe experiences anomalous dispersion accompanied by negligible
gain-absorption over a large bandwidth, a desirable feature for obtaining
superluminal propagation of pulses with negligible distortion.Comment: 10 pages + 8 figures; To appear in Physical Review
Recommended from our members
Numerical simulations of a diode laser BPH treatment system
Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the simulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to- patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates
Fluorescence spectrum of a two-level atom driven by a multiple modulated field
We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Latin American immigrants in Indianapolis: Perceptions of prejudice and discrimination
The article focuses on immigrants’ interactions with the Indiana natives, with emphasis in the city of Indianapolis and its suburbs. More specifically, this study aims at providing an understanding of the experiences of Latin American immigrants with special attention to perceptions of prejudice and discrimination and to feelings of social exclusion. A substantial proportion of Latin American immigrants interviewed indicated that they considered Indiana natives to be prejudiced and that they had personally experienced discrimination. The study reveals specific examples of discrimination experienced by the immigrants at the work place, in housing, in stores, restaurants and by various service providers. The results of the study demonstrate the relevance of the normative and power resource theories to explain prejudice and discrimination
Bioanalytical method development and validation for determination of metoprolol tartarate and hydrochlorothiazide using HPTLC in human plasma
A simple, sensitive, rapid and economic chromatographic method has been developed for determination of metoprolol tartarate and hydrochlorothiazide in human plasma using paracetamol as an internal standard. The analytical technique used for method development was high-performance thin-layer chromatography. HPTLC Camag with precoated silica gel Plate 60F254 (20 cm×10 cm) at 250 µm thicknesses (E. Merck, Darmstadt, Germany) was used as the stationary phase. The mobile phase used consisted of chloroform: methanol: ammonia (9:1:0.5v/v/v). Densitometric analysis was carried out at a wavelength of 239 nm. The rf values for hydrochlorothiazide, paracetamol and metoprolol tartarate were 0.13±0.04, 0.28±0.05, 0.48±0.04, respectively. Plasma samples were extracted by protein precipitation with methanol. Concentration ranges of 200, 400, 600, 800, 1000, 1200 ng/mL and 2000, 4000, 6000, 8000, 10000, 12000 ng/mL of hydrochlorothiazide and metoprolol tartarate, respectively, were used with plasma for the calibration curves. The percent recovery of metoprolol tartarate and hydrochlorothiazide was found to be 77.30 and 77.02 %, respectively. The stability of metoprolol tartarate and hydrochlorothiazide in plasma were confirmed during three freeze-thaw cycles (-20 ºC) on a bench for 24 hours and post-preparatively for 48 hours. The proposed method was validated statistically and proved suitable for determination of metoprolol tartarate and hydrochlorothiazide in human plasma
- …
