44 research outputs found
Attaining Sudan's decoding radius with no genus penalty for algebraic geometry codes
In this paper we present a decoding algorithm for algebraic geometry codes with error-correcting capacity beyond half the designed distance of the code. This algorithm comes as a fusion of the Power Error Locating Pairs algorithm for algebraic geometry codes and the technique used by Ehrhard in order to correct these codes up to half the designed distance. The decoding radius of this algorithm reaches that of Sudan algorithm, without any penalty given by the genus of the curve
Sur des algorithmes de décodage de codes géométriques au delà de la moitié de la distance minimale
This thesis deals with algebraic geometric (AG) codes and theirdecoding. Those codes are composed of vectors constructed by evaluatingspecific functions at points of an algebraic curve. The underlyingalgebraic structure of these codes made it possible to design severaldecoding algorithms. A first one, for codes from plane curves isproposed in 1989 by Justesen, Larsen, Jensen, Havemose and Hoholdt. Itis then extended to any curve by Skorobatov and Vladut and called"basic algorithm" in the literature. A few years later, Pellikaan andindependently Koetter, give a formulation without algebraic geometryusing simply the language of codes. This new interpretation, takes thename "Error Correcting Pairs" (ECP) algorithm and represents abreakthrough in coding theory since it applies to every code having acertain structure which is described only in terms of component-wiseproducts of codes. The decoding radius of this algorithm depends onthe code to which it is applied. For Reed-Solomon codes, it reacheshalf the minimum distance, which is the threshold for the solution tobe unique. For AG, the algorithm almost always manages todecode a quantity of errors equal to half the designeddistance. However, the success of the algorithm is only guaranteed fora quantity of errors less than half the designed distance minussome multiple curve's genus. Several attempts were thenmade to erase this genus-proportional penalty. A first decisiveresult was that of Pellikaan, who proved the existence of an algorithmwith a decoding radius equal to half the designed distance. Thenin 1993 Ehrhard obtained an effective procedure for constructing such analgorithm.In addition to the algorithms for unique decoding, AG codes havealgorithms correcting amount of errors greater than half thedesigned distance. Beyond this quantity, the uniqueness of thesolution may not be guaranteed. We then use a so-called "listdecoding" algorithm which returns the list of any possiblesolutions. This is the case of Sudan's algorithm for Reed-Solomoncodes. Another approach consists in designing algorithms, whichreturns a single solution but may fail. This is the case ofthe "power decoding". Sudan's and power decoding algorithms have firstbeen designed for Reed-Solomon codes, then extended to AG codes. Weobserve that these extensions do not have the same decoding radii:that of Sudan algorithm is lower than that of the power decoding,the difference being proportional to the genus of the curve.In this thesis we present two main results. First, we propose a newalgorithm that we call "power error locating pairs" which, like theECP algorithm, can be applied to any code with a certain structuredescribed in terms of component-wise products. Compared to the ECPalgorithm, this algorithm can correct errors beyond half thedesigned distance of the code. Applied to Reed-Solomon or to AG codes,it is equivalent to the power decoding algorithm. But it can also beapplied to specific cyclic codes for which it can be used to decodebeyond half the Roos bound. Moreover, this algorithm applied to AGcodes disregards the underlying geometric structure whichopens up interesting applications in cryptanalysis.The second result aims to erase the penalty proportional to thegenus in the decoding radius of Sudan's algorithm forAG codes. First, by following Pellikaan's method, weprove that such an algorithm exists. Then, by combining andgeneralizing the works of Ehrhard and Sudan, we give aneffective procedure to build this algorithm.Cette thèse porte sur les codes géométriques et leur décodage. Cescodes sont constitués de vecteurs d'evaluations de fonctionsspécifiques en des points d'une courbe algébrique. La structurealgébrique sous-jacente de ces codes a permis de concevoir plusieursalgorithmes de décodage. Un premier algorithme pour les codesprovenant de courbes planes est proposé en 1989 par Justesen, Larsen,Jensen, Havemose et Hoholdt. Il est ensuite étendu à toute courbe parSkorobatov et Vladut et appelé "basic algorithm" dans laliterature. Quelques années plus tard, Pellikaan et indépendammentKoetter en donnent une formulation sans géométrie algébrique utilisantsimplement le langage des codes. Cette nouvelle interprétation prendle nom d'algorithme "Error Correcting Pairs" (ECP) et représente unepercée en théorie des codes, car l'algorithme s'applique à toutcode muni d'une certaine structure qui se décrit uniquement entermes de produits coordonnées par coordonnées de codes. Le rayon dedécodage de cet algorithme dépend du code auquel il est appliqué. Pourles codes de Reed-Solomon, il atteint la moitié de la distanceminimale,seuil d'unicité de la solution. Pour les codes géométriques,l'algorithme arrive à décoder presque toujours une quantité d'erreurségale à la moitié de la distance construite. Toutefois, le bonfonctionnement de l'algorithme n'est garanti que pour une quantitéd'erreurs inférieure à la moitié de la distance construite moins unmultiple du genre de la courbe. Plusieurs tentatives ont ensuite été menéespour effacer cette penalité dûe au genre. Un premierrésultat déterminant a été celui de Pellikaan, qui a prouvél'existence d'un algorithme avec rayon de décodage égal à la moitié dela distance construite. Puis,en 1993 Ehrhard est parvenu à uneprocédure effective pour construire un tel algorithme.En plus des algorithmes pour le décodage unique,les codesgéométriques disposent d'algorithmes corrigeant une quantité d'erreurssupérieure à la moitié de la distance construite. Au delà de cettequantité, l'unicité de la solution pourrait ne pas être assurée. Onutilise alors des algorithmes dits de "decodage en liste" quirenvoient la liste des solutions possibles. C'est le cas del'algorithme de Sudan. Une autre approche consiste à concevoirdes algorithmes qui renvoient une unique solution mais peuvent échouer.C'est le cas du "power decoding". Les algorithmes de Sudan etdu power decoding ont d'abord été conçus pour les codes deReed-Solomon,puis étendus aux codes géométriques.On observe que ces extensions n'ont pas les mêmes rayonsde décodage: celui de l'algorithme de Sudan est inférieur à celui duPower decoding, la différence étant proportionnelle au genre de la courbe.Dans cette thèse nous présentons deux résultatsprincipaux. Premièrement, nous proposons un nouvel algorithme que nousappelons "power error locating pairs" qui, comme l'algorithme ECP,peut être appliqué à tout code muni d'une certainestructure se décrivant en termes de produits coordonnées parcoordonnées. Comparé à l'algorithme ECP, cetalgorithme peut corriger des erreurs au delà de la moitié de ladistance construite du code. Appliqué aux codes de Reed--Solomon ou,plus généralement, aux codes géométriques, il est equivalent àl'algorithme du power decoding. Mais il peut aussi être appliqué àdes codes cycliques spécifiques pour lesquels il permet de décoder audelà de la moitié de la borne de Roos. Par ailleurs, cet algorithmeappliqué aux codes géométriques fait abstraction de la structuregéométrique sous-jascente ce qui ouvre d'intéressantes applications encryptanalyse.Le second résultat a pour but d'effacer la penalité proportionnelle augenre dans le rayon de décodage de l'algorithme de Sudan pour lescodes géométriques. D'abord, en suivant la méthode de Pellikaan, nousprouvons que un tel algorithme existe. Puis, engénéralisant les travaux de Ehrhard et Sudan, nous donnons uneprocédure effective pour construire cet algorithme
Metabotropic glutamate 2/3 receptors and epigenetic modifications in psychotic disorders: a review
Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as "major psychosis"; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors
Sensitivity to Climate and Weather Changes in Euthymic Bipolar Subjects. Association With Suicide Attempts
Background: Climate and weather are known to affect multiple areas of human life, including mental health. In bipolar disorder (BD), seasonality represents an environmental trigger for mood switches, and climatic variables may contribute to recurrences. Several studies reported seasonal and climatic-related variations in the rate of suicide attempts. Suicide risk is relevant in BD, with approximately 25% of patients attempting suicide. Therefore, this study aimed to assess sensitivity to weather and climatic variations in BD subjects and its relationship with lifetime suicide attempts.
Methods: Three hundred fifty-two euthymic BD and 352 healthy control subjects, homogeneous with respect to socio-demographic characteristics, were enrolled. All participants were administered the METEO-Questionnaire (METEO-Q) to evaluate susceptibility to weather and climatic changes. We also investigated the potential relationship between sensitivity to climate and weather and lifetime suicide attempts in BD patients.
Results: METEO-Q scores and the number of subjects reaching the cut-off for meteorosensitivity/meteoropathy were significantly higher in BD patients. Within the clinical group, BD subjects with lifetime suicide attempts obtained higher METEO-Q scores, with no differences between BD-I and BD-II. The number of suicide attempts directly correlated with METEO-Q scores. The presence of suicide attempts was associated with the physical and psychological symptoms related to weather variations.
Discussion: Our findings support the relevance of sensitivity to weather and climate variations in a large sample of BD subjects and point out the association of this feature with lifetime suicide attempts
Gender Differences and Psychopathological Features Associated With Addictive Behaviors in Adolescents.
BACKGROUND:
The aims of the study were to assess prevalence and gender differences of addictive behaviors (substance- and non-substance-related) in an adolescent population, and their association with psychopathological features and academic performance.
MATERIAL AND METHODS:
A sample of high school Italian students (n\u2009=\u2009996; M\u2009=\u2009240, F\u2009=\u2009756) was examined using a self-report survey concerning sociodemographic characteristics, cigarette smoking, alcohol and substance use, perceived academic performance, activities, and behaviors (Internet use, gambling, and physical exercising). The Internet Addiction Test, the South Oaks Gambling Screen-revised Adolescent, and the Exercise Addiction Inventory-Short Form were administered to identify problematic behaviors. The Barratt Impulsiveness Scale for Adolescent, the Snaith-Hamilton Pleasure Scale, the Dissociative Experience Scale for Adolescent, and the Toronto Alexithymia Scale were used to investigate psychopathological dimensions.
RESULTS:
Frequent alcohol intake and lifetime substances consumption were more common among males. The occurrence of other addictive behaviors was 22.1% for problematic Internet use (M\u2009=\u2009F), 9.7% for at-risk/problematic gambling (M\u2009>\u2009F), and 6.2% for maladaptive physical exercise (M\u2009=\u2009F). We also found an association between substance-/non-substance-related addictive behaviors and psychopathological dimensions. Addictive behaviors were more frequent among students reporting poor school performance.
CONCLUSION:
Our study showed a relevant prevalence of addictive behaviors in a sample of Italian high school students, with specific gender differences. We underlined the cooccurrence of substance and non-substance-related addictive behaviors, and their association with worse school performance. Dissociative proneness, anhedonia, alexithymia, and impulsivity were associated with addictive behaviors in adolescents and might represent vulnerability factors for the development of psychiatric disorders in adulthood. A better understanding of psychopathological features associated with addictive behaviors might be useful for the prevention/early intervention
Decoding algorithms for Reed-Solomon Codes.
In questo lavoro studiamo alcuni algoritmi di decodifica per i codici di Reed-Solomon. Richiamiamo in particolare gli algoritmi di Berlekamp-Welch e degli Error Correcting Pairs che correggono una quantità di errori minore o uguale alla metà della distanza minimale (bound di non ambiguità della soluzione). Confrontiamo gli algoritmi di Sudan (list decoding) e del Power Decoding (restituisce una soluzione o zero), che sono delle generelizzazioni dell'algoritmo di Berlekamp-Welch e possono correggere una quantità di errori superiore al bound di non ambiguità. Infine presentiamo una generalizzazione dell'algoritmo degli Error Correcting Pairs che può essere utilizzato anche per altri codici geometrici e che nel caso dei codici di Reed Solomon presenta un raggio di decodifica pari a quello dell'algoritmo del Power Decoding, ma con un costo minore
Sur des algorithmes de décodage de codes géométriques au delà de la moitié de la distance minimale
This thesis deals with algebraic geometric (AG) codes and theirdecoding. Those codes are composed of vectors constructed by evaluatingspecific functions at points of an algebraic curve. The underlyingalgebraic structure of these codes made it possible to design severaldecoding algorithms. A first one, for codes from plane curves isproposed in 1989 by Justesen, Larsen, Jensen, Havemose and Hoholdt. Itis then extended to any curve by Skorobatov and Vladut and called"basic algorithm" in the literature. A few years later, Pellikaan andindependently Koetter, give a formulation without algebraic geometryusing simply the language of codes. This new interpretation, takes thename "Error Correcting Pairs" (ECP) algorithm and represents abreakthrough in coding theory since it applies to every code having acertain structure which is described only in terms of component-wiseproducts of codes. The decoding radius of this algorithm depends onthe code to which it is applied. For Reed-Solomon codes, it reacheshalf the minimum distance, which is the threshold for the solution tobe unique. For AG, the algorithm almost always manages todecode a quantity of errors equal to half the designeddistance. However, the success of the algorithm is only guaranteed fora quantity of errors less than half the designed distance minussome multiple curve's genus. Several attempts were thenmade to erase this genus-proportional penalty. A first decisiveresult was that of Pellikaan, who proved the existence of an algorithmwith a decoding radius equal to half the designed distance. Thenin 1993 Ehrhard obtained an effective procedure for constructing such analgorithm.In addition to the algorithms for unique decoding, AG codes havealgorithms correcting amount of errors greater than half thedesigned distance. Beyond this quantity, the uniqueness of thesolution may not be guaranteed. We then use a so-called "listdecoding" algorithm which returns the list of any possiblesolutions. This is the case of Sudan's algorithm for Reed-Solomoncodes. Another approach consists in designing algorithms, whichreturns a single solution but may fail. This is the case ofthe "power decoding". Sudan's and power decoding algorithms have firstbeen designed for Reed-Solomon codes, then extended to AG codes. Weobserve that these extensions do not have the same decoding radii:that of Sudan algorithm is lower than that of the power decoding,the difference being proportional to the genus of the curve.In this thesis we present two main results. First, we propose a newalgorithm that we call "power error locating pairs" which, like theECP algorithm, can be applied to any code with a certain structuredescribed in terms of component-wise products. Compared to the ECPalgorithm, this algorithm can correct errors beyond half thedesigned distance of the code. Applied to Reed-Solomon or to AG codes,it is equivalent to the power decoding algorithm. But it can also beapplied to specific cyclic codes for which it can be used to decodebeyond half the Roos bound. Moreover, this algorithm applied to AGcodes disregards the underlying geometric structure whichopens up interesting applications in cryptanalysis.The second result aims to erase the penalty proportional to thegenus in the decoding radius of Sudan's algorithm forAG codes. First, by following Pellikaan's method, weprove that such an algorithm exists. Then, by combining andgeneralizing the works of Ehrhard and Sudan, we give aneffective procedure to build this algorithm.Cette thèse porte sur les codes géométriques et leur décodage. Cescodes sont constitués de vecteurs d'evaluations de fonctionsspécifiques en des points d'une courbe algébrique. La structurealgébrique sous-jacente de ces codes a permis de concevoir plusieursalgorithmes de décodage. Un premier algorithme pour les codesprovenant de courbes planes est proposé en 1989 par Justesen, Larsen,Jensen, Havemose et Hoholdt. Il est ensuite étendu à toute courbe parSkorobatov et Vladut et appelé "basic algorithm" dans laliterature. Quelques années plus tard, Pellikaan et indépendammentKoetter en donnent une formulation sans géométrie algébrique utilisantsimplement le langage des codes. Cette nouvelle interprétation prendle nom d'algorithme "Error Correcting Pairs" (ECP) et représente unepercée en théorie des codes, car l'algorithme s'applique à toutcode muni d'une certaine structure qui se décrit uniquement entermes de produits coordonnées par coordonnées de codes. Le rayon dedécodage de cet algorithme dépend du code auquel il est appliqué. Pourles codes de Reed-Solomon, il atteint la moitié de la distanceminimale,seuil d'unicité de la solution. Pour les codes géométriques,l'algorithme arrive à décoder presque toujours une quantité d'erreurségale à la moitié de la distance construite. Toutefois, le bonfonctionnement de l'algorithme n'est garanti que pour une quantitéd'erreurs inférieure à la moitié de la distance construite moins unmultiple du genre de la courbe. Plusieurs tentatives ont ensuite été menéespour effacer cette penalité dûe au genre. Un premierrésultat déterminant a été celui de Pellikaan, qui a prouvél'existence d'un algorithme avec rayon de décodage égal à la moitié dela distance construite. Puis,en 1993 Ehrhard est parvenu à uneprocédure effective pour construire un tel algorithme.En plus des algorithmes pour le décodage unique,les codesgéométriques disposent d'algorithmes corrigeant une quantité d'erreurssupérieure à la moitié de la distance construite. Au delà de cettequantité, l'unicité de la solution pourrait ne pas être assurée. Onutilise alors des algorithmes dits de "decodage en liste" quirenvoient la liste des solutions possibles. C'est le cas del'algorithme de Sudan. Une autre approche consiste à concevoirdes algorithmes qui renvoient une unique solution mais peuvent échouer.C'est le cas du "power decoding". Les algorithmes de Sudan etdu power decoding ont d'abord été conçus pour les codes deReed-Solomon,puis étendus aux codes géométriques.On observe que ces extensions n'ont pas les mêmes rayonsde décodage: celui de l'algorithme de Sudan est inférieur à celui duPower decoding, la différence étant proportionnelle au genre de la courbe.Dans cette thèse nous présentons deux résultatsprincipaux. Premièrement, nous proposons un nouvel algorithme que nousappelons "power error locating pairs" qui, comme l'algorithme ECP,peut être appliqué à tout code muni d'une certainestructure se décrivant en termes de produits coordonnées parcoordonnées. Comparé à l'algorithme ECP, cetalgorithme peut corriger des erreurs au delà de la moitié de ladistance construite du code. Appliqué aux codes de Reed--Solomon ou,plus généralement, aux codes géométriques, il est equivalent àl'algorithme du power decoding. Mais il peut aussi être appliqué àdes codes cycliques spécifiques pour lesquels il permet de décoder audelà de la moitié de la borne de Roos. Par ailleurs, cet algorithmeappliqué aux codes géométriques fait abstraction de la structuregéométrique sous-jascente ce qui ouvre d'intéressantes applications encryptanalyse.Le second résultat a pour but d'effacer la penalité proportionnelle augenre dans le rayon de décodage de l'algorithme de Sudan pour lescodes géométriques. D'abord, en suivant la méthode de Pellikaan, nousprouvons que un tel algorithme existe. Puis, engénéralisant les travaux de Ehrhard et Sudan, nous donnons uneprocédure effective pour construire cet algorithme
Sur des algorithmes de décodage de codes géométriques au delà de la moitié de la distance minimale
This thesis deals with algebraic geometric (AG) codes and theirdecoding. Those codes are composed of vectors constructed by evaluatingspecific functions at points of an algebraic curve. The underlyingalgebraic structure of these codes made it possible to design severaldecoding algorithms. A first one, for codes from plane curves isproposed in 1989 by Justesen, Larsen, Jensen, Havemose and Hoholdt. Itis then extended to any curve by Skorobatov and Vladut and called"basic algorithm" in the literature. A few years later, Pellikaan andindependently Koetter, give a formulation without algebraic geometryusing simply the language of codes. This new interpretation, takes thename "Error Correcting Pairs" (ECP) algorithm and represents abreakthrough in coding theory since it applies to every code having acertain structure which is described only in terms of component-wiseproducts of codes. The decoding radius of this algorithm depends onthe code to which it is applied. For Reed-Solomon codes, it reacheshalf the minimum distance, which is the threshold for the solution tobe unique. For AG, the algorithm almost always manages todecode a quantity of errors equal to half the designeddistance. However, the success of the algorithm is only guaranteed fora quantity of errors less than half the designed distance minussome multiple curve's genus. Several attempts were thenmade to erase this genus-proportional penalty. A first decisiveresult was that of Pellikaan, who proved the existence of an algorithmwith a decoding radius equal to half the designed distance. Thenin 1993 Ehrhard obtained an effective procedure for constructing such analgorithm.In addition to the algorithms for unique decoding, AG codes havealgorithms correcting amount of errors greater than half thedesigned distance. Beyond this quantity, the uniqueness of thesolution may not be guaranteed. We then use a so-called "listdecoding" algorithm which returns the list of any possiblesolutions. This is the case of Sudan's algorithm for Reed-Solomoncodes. Another approach consists in designing algorithms, whichreturns a single solution but may fail. This is the case ofthe "power decoding". Sudan's and power decoding algorithms have firstbeen designed for Reed-Solomon codes, then extended to AG codes. Weobserve that these extensions do not have the same decoding radii:that of Sudan algorithm is lower than that of the power decoding,the difference being proportional to the genus of the curve.In this thesis we present two main results. First, we propose a newalgorithm that we call "power error locating pairs" which, like theECP algorithm, can be applied to any code with a certain structuredescribed in terms of component-wise products. Compared to the ECPalgorithm, this algorithm can correct errors beyond half thedesigned distance of the code. Applied to Reed-Solomon or to AG codes,it is equivalent to the power decoding algorithm. But it can also beapplied to specific cyclic codes for which it can be used to decodebeyond half the Roos bound. Moreover, this algorithm applied to AGcodes disregards the underlying geometric structure whichopens up interesting applications in cryptanalysis.The second result aims to erase the penalty proportional to thegenus in the decoding radius of Sudan's algorithm forAG codes. First, by following Pellikaan's method, weprove that such an algorithm exists. Then, by combining andgeneralizing the works of Ehrhard and Sudan, we give aneffective procedure to build this algorithm.Cette thèse porte sur les codes géométriques et leur décodage. Cescodes sont constitués de vecteurs d'evaluations de fonctionsspécifiques en des points d'une courbe algébrique. La structurealgébrique sous-jacente de ces codes a permis de concevoir plusieursalgorithmes de décodage. Un premier algorithme pour les codesprovenant de courbes planes est proposé en 1989 par Justesen, Larsen,Jensen, Havemose et Hoholdt. Il est ensuite étendu à toute courbe parSkorobatov et Vladut et appelé "basic algorithm" dans laliterature. Quelques années plus tard, Pellikaan et indépendammentKoetter en donnent une formulation sans géométrie algébrique utilisantsimplement le langage des codes. Cette nouvelle interprétation prendle nom d'algorithme "Error Correcting Pairs" (ECP) et représente unepercée en théorie des codes, car l'algorithme s'applique à toutcode muni d'une certaine structure qui se décrit uniquement entermes de produits coordonnées par coordonnées de codes. Le rayon dedécodage de cet algorithme dépend du code auquel il est appliqué. Pourles codes de Reed-Solomon, il atteint la moitié de la distanceminimale,seuil d'unicité de la solution. Pour les codes géométriques,l'algorithme arrive à décoder presque toujours une quantité d'erreurségale à la moitié de la distance construite. Toutefois, le bonfonctionnement de l'algorithme n'est garanti que pour une quantitéd'erreurs inférieure à la moitié de la distance construite moins unmultiple du genre de la courbe. Plusieurs tentatives ont ensuite été menéespour effacer cette penalité dûe au genre. Un premierrésultat déterminant a été celui de Pellikaan, qui a prouvél'existence d'un algorithme avec rayon de décodage égal à la moitié dela distance construite. Puis,en 1993 Ehrhard est parvenu à uneprocédure effective pour construire un tel algorithme.En plus des algorithmes pour le décodage unique,les codesgéométriques disposent d'algorithmes corrigeant une quantité d'erreurssupérieure à la moitié de la distance construite. Au delà de cettequantité, l'unicité de la solution pourrait ne pas être assurée. Onutilise alors des algorithmes dits de "decodage en liste" quirenvoient la liste des solutions possibles. C'est le cas del'algorithme de Sudan. Une autre approche consiste à concevoirdes algorithmes qui renvoient une unique solution mais peuvent échouer.C'est le cas du "power decoding". Les algorithmes de Sudan etdu power decoding ont d'abord été conçus pour les codes deReed-Solomon,puis étendus aux codes géométriques.On observe que ces extensions n'ont pas les mêmes rayonsde décodage: celui de l'algorithme de Sudan est inférieur à celui duPower decoding, la différence étant proportionnelle au genre de la courbe.Dans cette thèse nous présentons deux résultatsprincipaux. Premièrement, nous proposons un nouvel algorithme que nousappelons "power error locating pairs" qui, comme l'algorithme ECP,peut être appliqué à tout code muni d'une certainestructure se décrivant en termes de produits coordonnées parcoordonnées. Comparé à l'algorithme ECP, cetalgorithme peut corriger des erreurs au delà de la moitié de ladistance construite du code. Appliqué aux codes de Reed--Solomon ou,plus généralement, aux codes géométriques, il est equivalent àl'algorithme du power decoding. Mais il peut aussi être appliqué àdes codes cycliques spécifiques pour lesquels il permet de décoder audelà de la moitié de la borne de Roos. Par ailleurs, cet algorithmeappliqué aux codes géométriques fait abstraction de la structuregéométrique sous-jascente ce qui ouvre d'intéressantes applications encryptanalyse.Le second résultat a pour but d'effacer la penalité proportionnelle augenre dans le rayon de décodage de l'algorithme de Sudan pour lescodes géométriques. D'abord, en suivant la méthode de Pellikaan, nousprouvons que un tel algorithme existe. Puis, engénéralisant les travaux de Ehrhard et Sudan, nous donnons uneprocédure effective pour construire cet algorithme