78 research outputs found

    A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells

    Get PDF
    PTOV1 is a transcription and translation regulator and a promoter of cancer progression. Its overexpression in prostate cancer induces transcription of drug resistance and self-renewal genes, and docetaxel resistance. Here we studied PTOV1 ability to directly activate the transcription of ALDH1A1 and CCNG2 by binding to specific promoter sequences. Chromatin immunoprecipitation and electrophoretic mobility shift assays identified a DNA-binding motif inside the PTOV-A domain with similarities to known AT-hooks that specifically interacts with ALDH1A1 and CCNG2 promoters. Mutation of this AT-hook-like sequence significantly decreased the expression of ALDH1A1 and CCNG2 promoted by PTOV1. Immunohistochemistry revealed the association of PTOV1 with mitotic chromosomes in high grade prostate, colon, bladder, and breast carcinomas. Overexpression of PTOV1, ALDH1A1, and CCNG2 significantly correlated with poor prognosis in prostate carcinomas and with shorter relapse-free survival in colon carcinoma. The previously described interaction with translation complexes and its direct binding to ALDH1A1 and CCNG2 promoters found here reveal the PTOV1 capacity to modulate the expression of critical genes at multiple levels in aggressive cancers. Remarkably, the AT-hook motifs in PTOV1 open possibilities for selective targeting its nuclear and/or cytoplasmic activities

    Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    Get PDF
    Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis [...]

    SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations

    Get PDF
    Background Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. Methods M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. Results Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. Conclusions The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer

    A Functional Proteomic Method for Biomarker Discovery

    Get PDF
    The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer

    Survival in male COVID-19 patients linked to testosterone recovery

    Get PDF
    Infection with SARS-CoV-2 portends a broad range of outcomes, from a majority of asymptomatic cases or mild clinical courses to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty and co-morbidities such as obesity, diabetes or cardiovascular disease. A precise knowledge is still lacking of the molecular and biological mechanisms that may explain the association of severe disease with male sex. Here, we show that testosterone trajectories are highly accurate individual predictors (AUC of ROC = 0.928, p < 0.0001) of survival in male COVID-19 patients. Longitudinal determinations of blood levels of luteinizing hormone (LH) and androstenedione suggest an early modest inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by either full recovery in survivors or a peripheral failure in lethal cases. Moreover, failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and decrease of non-classical monocytes. The strong association of recovery or failure to reinstate testosterone levels with survival or death from COVID-19 in male patients is suggestive of a significant role of testosterone status in the immune responses to COVID-19.This study was funded by grants from the Ministerio de Ciencia e Innovacion (RTI2018-096055-B-I00), Consejo Superior de Investigaciones Cientificas COVID-19 Research Fund (CSIC-COV19-006, CSIC-COV19-201), Agencia de Gestio Ajuts Universitaris i de Recerca (2020PANDE00048 and 2017SGR 1411 GRC), Plan Nacional de I+D (PID-107139RB-C21) and Instituto Nacional de la Salud Carlos III (PI18/00346 and COVID-19_00416).N

    Additional file 1 of Recovery of serum testosterone levels is an accurate predictor of survival from COVID-19 in male patients [Dataset]

    Get PDF
    Additional file 1: Table ST1. Treatments comparison by outcome in male patients. Table ST2. Treatments comparison by outcome in female patients. Table ST3. WHO classification of disease outcome. Table ST4. Panels and antibodies used for immunophenotyping. Figure SF1. Patients distribution by outcome, age, and comorbidities. Figure SF2. Distribution of male patients with comorbidities according to age and testosterone levels. Figure SF3. Longitudinal analysis of serum levels of IL-6, C-reactive protein (CRP), ferritin and lactate dehydrogenase (LDH) in male patients. Figure SF4. Bioavailable testosterone serum levels and correlation between age and sex-hormone binding globulin (SHBG). Figure SF5. Flow cytometry analysis of circulating immune subpopulations in three illustrative cases with moderate, severe survivor and severe deceased outcomes.Ministerio de Ciencia, Innovación y Universidades Consejo Superior de Investigaciones Científicas Agència de Gestió d’Ajuts Universitaris i de Recerca Conselleria d'Educació, Investigació, Cultura i Esport Instituto de Salud Carlos IIIPeer reviewe

    Activation of T lymphocytes for the adoptive immunotherapy of cancer

    Full text link
    Background: Adoptive immunotherapy of malignancy involves the passive transfer of antitumor-reactive cells into a host in order to mediate tumor regression. Based on animal models, the transfer of immune lymphoid cells can eradicate widely disseminated tumors and establish long-term systemic immunity. Critical for successful adoptive immunotherapy is the ability to isolate large numbers of immune cells. For clinical therapy, it will require the development of in vitro methods to promote the sensitization and propagation of tumor-reactive cells. However, this is formidable task since human cancers are postulated to be poorly immunogenic because of their spontaneous origins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41399/1/10434_2006_Article_BF02303568.pd

    Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    Get PDF
    Lide Alaña et al.[Background] PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. [Methods] Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. [Results] Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this correlation was significant in metastatic lesions. [Conclusions] High levels of the adaptor protein PTOV1 counteract the transcriptional activity of Notch. Our evidences link the pro-oncogenic and pro-metastatic effects of PTOV1 in prostate cancer to its inhibitory activity on Notch signaling and are supportive of a tumor suppressor role of Notch in prostate cancer progression. © 2014 Alaña et al.; licensee BioMed Central Ltd.This work was supported by: Instituto Carlos III RD06/0020/0058 RETICS, Ministry of Science and Innovation SAF2008-03936 and SAF2011-30496 (to R.P.), SAF2008-04136-C02-01 and SAF2011-24686 (to T.M.T.), AGAUR 2009SGR1482 (to R.P. and T.M.T.), Red Nacional de Biobancos, Instituto Carlos III (to R.B.), Fondo de Investigaciones de la Seguridad Social PI20231 (to P.L.F.) and Ministry of Science and Innovation BFU2009-09781 (to F.S.)Peer Reviewe

    Inhibidores del activador tisular del plasmingeno (T-PA) con capacidad terapeutica.

    No full text
    Fecha de solicitud: Titulares: Consejo Superior de Investigaciones Científicas (CSIC).- Hospital Vall d´Hebron .- Reventos Puigjaner.[EN]The invention relates to the tissue-type plasminogen activator (t-PA) which is a serine protease that is overexpressed in various different types of tumours, including cancer of the pancreas, melanomas and neuroblastomas. More specifically, the invention relates to t-PA activity and expression inhibitors that have been developed as antitumour agents. [ES]El activador tisular del plasminógeno (t-PA) es una serina proteasa sobreexpresada en varios tipos de tumores, incluyendo cáncer de páncreas, melanomas y neuroblastomas. En la presente invención han sido desarrollados inhibidores de la expresión y actividad del t-PA como agentes antitumorales.Peer reviewe
    • …
    corecore