202 research outputs found
Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.
Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool
malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication
Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal responses to drugs and insecticides are both spreading geographically and emerging independently and are being seen at increasing intensities. Whilst resistance is unavoidable, its effects can be mitigated through resistance management practices, such as exposing the parasite or vector to more than one selective agent. Resistance contributed to the failure of the 20th century Global Malaria Eradication Programme, and yet the global response to this issue continues to be slow and poorly coordinated—too often, too little, too late. The Malaria Eradication Research Agenda (malERA) Refresh process convened a panel on resistance of both insecticides and antimalarial drugs. This paper outlines developments in the field over the past 5 years, highlights gaps in knowledge, and proposes a research agenda focused on managing resistance. A deeper understanding of the complex biological processes involved and how resistance is selected is needed, together with evidence of its public health impact. Resistance management will require improved use of entomological and parasitological data in decision making, and optimisation of the useful life of new and existing products through careful implementation, combination, and evaluation. A proactive, collaborative approach is needed from basic science and the development of new tools to programme and policy interventions that will ensure that the armamentarium of drugs and insecticides is sufficient to deal with the challenges of malaria control and its elimination
The transmission spectrum of Earth through lunar eclipse observations
Of the 342 planets discovered so far orbiting other stars, 58 "transit" the
stellar disk, meaning that they can be detected by a periodic decrease in the
starlight flux. The light from the star passes through the atmosphere of the
planet, and in a few cases the basic atmospheric composition of the planet can
be estimated. As we get closer to finding analogues of Earth, an important
consideration toward the characterization of exoplanetary atmospheres is what
the transmission spectrum of our planet looks like. Here we report the optical
and near-infrared transmission spectrum of the Earth, obtained during a lunar
eclipse. Some biologically relevant atmospheric features that are weak in the
reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and
methane) are much stronger in the transmission spectrum, and indeed stronger
than predicted by modelling. We also find the fingerprints of the Earth's
ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2),
which are missing in the reflected spectrum.Comment: Published in Nature, 11 July 2009. This file also contains the
on-line materia
Mortality Risk Prediction by an Insurance Company and Long-Term Follow-Up of 62,000 Men
Background: Insurance companies use medical information to classify the mortality risk of applicants. Adding genetic tests to this assessment is currently being debated. This debate would be more meaningful, if results of present-day risk prediction were known. Therefore, we compared the predicted with the observed mortality of men who applied for life insurance, and determined the prognostic value of the risk assessment. Methods: Long-term follow-up was available for 62,334 male applicants whose mortality risk was predicted with medical evaluation and they were assigned to five groups with increasing risk from 1 to 5. We calculated all cause standardized mortality ratios relative to the Dutch population and compared groups with Cox's regression. We compared the discriminative ability of risk assessments as indicated by a concordance index (c). Results: In 844,815 person years we observed 3,433 deaths. The standardized mortality relative to the Dutch male population was 0.76 (95 percent confidence interval, 0.73 to 0.78). The standardized mortality ratios ranged from 0.54 in risk group 1 to 2.37 in group 5. A large number of risk factors and diseases were significantly associated with increased mortality. The algorithm of prediction was significantly, but only slightly better than summation of the number of disorders and risk factors (c-index, 0.64 versus 0.60, P,0.001). Conclusions: Men applying for insurance clearly had better survival relative to the general population. Readily available medical evaluation enabled accurate prediction of the mortality risk of large groups, but the deceased men could not have been identified with the applied prediction method
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Zebrafish arl6ip1 Is Required for Neural Crest Development during Embryogenesis
BACKGROUND:Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS:We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE:Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification
Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms
Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?
Background: We recently reported that sphingomyelin (SM) analogs substituted on the alkyl chain by various fluorophores (e.g. BODIPY) readily inserted at trace levels into the plasma membrane of living erythrocytes or CHO cells and spontaneously concentrated into micrometric domains. Despite sharing the same fluorescent ceramide backbone, BODIPY-SM domains segregated from similar domains labelled by BODIPY-D-e-lactosylceramide (D-e-LacCer) and depended on endogenous SM.
Methodology/Principal Findings. We show here that BODIPY-SM further differed from BODIPY-D-e-LacCer or -glucosylceramide (GlcCer) domains in temperature dependence, propensity to excimer formation, association with a glycosylphosphatidylinositol (GPI)-anchored fluorescent protein reporter, and lateral diffusion by FRAP, thus demonstrating different lipid phases and boundaries. Whereas BODIPY-D-e-LacCer behaved like BODIPY-GlcCer, its artificial stereoisomer, BODIPY-L-t-LacCer, behaved like BODIPY- and NBD-phosphatidylcholine (PC). Surprisingly, these two PC analogs also formed micrometric patches yet preferably at low temperature, did not show excimer, never associated with the GPI reporter and showed major restriction to lateral diffusion when photobleached in large fields. This functional comparison supported a three-phase micrometric compartmentation, of decreasing order: BODIPY-GSLs > -SM > -PC (or artificial L-t-LacCer). Co-existence of three segregated compartments was further supported by double labelling experiments and was confirmed by additive occupancy, up to ~70% cell surface coverage. Specific alterations of BODIPY-analogs domains by manipulation of corresponding endogenous sphingolipids suggested that distinct fluorescent lipid partition might reflect differential intrinsic propensity of endogenous membrane lipids to form large assemblies.
Conclusions/Significance. We conclude that fluorescent membrane lipids spontaneously concentrate into distinct micrometric assemblies. We hypothesize that these might reflect preexisting compartmentation of endogenous PM lipids into non-overlapping domains of differential order: GSLs > SM > PC, resulting into differential self-adhesion of the two former, with exclusion of the latter
Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia
The Role of Turtles as Coral Reef Macroherbivores
Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood
- …