354 research outputs found

    A review of deformable roll coating systems

    No full text

    Peptide:glycosaminoglycan hybrid hydrogels as an injectable intervention for spinal disc degeneration

    Get PDF
    Degeneration of the spinal discs is a major cause of back pain. During the degeneration process, there is a loss of glycosaminoglycans (GAGs) from the proteoglycan-rich gel in the disc’s nucleus, which adversely alters biomechanical performance. Current surgical treatments for back pain are highly invasive and have low success rates; there is an urgent need for minimally-invasive approaches that restore the physiological mechanics of the spine. Here we present an injectable peptide:GAG hydrogel that rapidly self-assembles in situ and restores the mechanics of denucleated intervertebral discs. It forms a gel with comparable mechanical properties to the native tissue within seconds to minutes depending on the peptide chosen. Unlike other biomaterials that have been proposed for this purpose, these hybrid hydrogels can be injected through a very narrow 25 G gauge needle, minimising damage to the surrounding soft tissue, and they mimic the ability of the natural tissue to draw in water by incorporating GAGs. Furthermore, the GAGs enhance the gelation kinetics and thermodynamic stability of peptide hydrogels, significantly reducing effusion of injected material from the intervertebral disc (GAG leakage of 8 ± 3% after 24 hrs when peptide present, compared to 39 ± 3% when no peptide present). In an ex vivo model, we demonstrate that the hydrogels can restore the compressive stiffness of denucleated bovine intervertebral discs. Compellingly, this novel biomaterial has the potential to transform the clinical treatment of back pain by resolving current surgical challenges, thus improving patient quality of life

    Hydrodynamic Mixing Tunes the Stiffness of Proteoglycan‐Mimicking Physical Hydrogels

    Get PDF
    Self‐assembling hydrogels are promising materials for regenerative medicine and tissue engineering. However, designing hydrogels that replicate the 3–4 order of magnitude variation in soft tissue mechanics remains a major challenge. Here hybrid hydrogels are investigated formed from short self‐assembling β‐fibril peptides, and the glycosaminoglycan chondroitin sulfate (CS), chosen to replicate physical aspects of proteoglycans, specifically natural aggrecan, which provides structural mechanics to soft tissues. Varying the peptide:CS compositional ratio (1:2, 1:10, or 1:20) can tune the mechanics of the gel by one to two orders of magnitude. In addition, it is demonstrated that at any fixed composition, the gel shear modulus can be tuned over approximately two orders of magnitude through varying the initial vortex mixing time. This tuneability arises due to changes in the mesoscale structure of the gel network (fibril width, length, and connectivity), giving rise to both shear‐thickening and shear‐thinning behavior. The resulting hydrogels range in shear elastic moduli from 0.14 to 220 kPa, mimicking the mechanical variability in a range of soft tissues. The high degree of discrete tuneability of composition and mechanics in these hydrogels makes them particularly promising for matching the chemical and mechanical requirements of different applications in tissue engineering and regenerative medicine

    Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes

    No full text
    The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization

    Suspected idiopathic sclerosing orbital inflammation presenting as immunoglobulin G4-related disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Idiopathic sclerosing orbital inflammation is a rare and ill-defined heterogeneous entity, and a distinct subset of orbital inflammation. Recently, attention has been focused on immunoglobulin G4-related disease complicated with fibrotic changes in some other organs with high serum immunoglobulin G4 levels. This report presents a case of suspected idiopathic sclerosing orbital inflammation complicated with high serum immunoglobulin G4 levels.</p> <p>Case presentation</p> <p>An 82-year-old Japanese woman had a 30-year history of chronic thyroiditis. She experienced right ptosis and eyelid swelling. These symptoms gradually developed over five years. The clinical and radiographic findings suggested that our patient had idiopathic sclerosing orbital inflammation. We were unable to obtain our patient's consent to perform a biopsy. While the serum immunoglobulin G level was within the normal limits, the serum immunoglobulin G4 level was significantly elevated. The serum immunoglobulin G4 levels decreased after the administration of oral prednisolone at a daily dose of 20 mg. In addition, the swelling and ptosis of the right upper eyelid disappeared gradually after four weeks. Our patient was then suspected to have idiopathic sclerosing orbital inflammation complicated with immunoglobulin G4-related disease and chronic thyroiditis.</p> <p>Conclusion</p> <p>An orbital pseudotumor of this type is indicative of idiopathic sclerosing orbital inflammation immunoglobulin G4-related disease. Immunoglobulin G4 may thus be considered a subclass of immunoglobulin G when the serum immunoglobulin G level is within normal limits.</p

    Gender roles and their influence on life prospects for women in urban Karachi, Pakistan: a qualitative study

    Get PDF
    Pakistan is a patriarchal society where men are the primary authority figures and women are subordinate. This has serious implications on women&#x0027;s and men&#x0027;s life prospects.The aim was to explore current gender roles in urban Pakistan, how these are reproduced and maintained and influence men&#x0027;s and women&#x0027;s life circumstances.Five focus group discussions were conducted, including 28 women representing employed, unemployed, educated and uneducated women from different socio-economic strata. Manifest and latent content analyses were applied. Two major themes emerged during analysis: &#x2018;Reiteration of gender roles&#x2019; and &#x2018;Agents of change&#x2019;. The first theme included perceptions of traditional gender roles and how these preserve women&#x0027;s subordination. The power gradient, with men holding a superior position in relation to women, distinctive features in the culture and the role of the extended family were considered to interact to suppress women. The second theme included agents of change, where the role of education was prominent as well as the role of mass media. It was further emphasised that the younger generation was more positive to modernisation of gender roles than the elder generation.This study reveals serious gender inequalities and human rights violations against women in the Pakistani society. The unequal gender roles were perceived as static and enforced by structures imbedded in society. Women routinely faced serious restrictions and limitations of autonomy. However, attainment of higher levels of education especially not only for women but also for men was viewed as an agent towards change. Furthermore, mass media was perceived as having a positive role to play in supporting women&#x0027;s empowerment

    Unification modulo Lists with Reverse, Relation with Certain Word Equations

    Get PDF
    International audienceDecision procedures for various list theories have been investigated in the literature with applications to automated verification. Here we show that the unifiability problem for some list theories with a \emph{reverse} operator is NP-complete. We also give a unifiability algorithm for the case where the theories are extended with a \emph{length} operator on lists

    Slow GABAA mediated synaptic transmission in rat visual cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABA<sub>A </sub>receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABA<sub>A </sub>responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABA<sub>A </sub>receptor mediated inhibitory postsynaptic currents (IPSCs). These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABA<sub>A </sub>IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex.</p> <p>Results</p> <p>GABA<sub>A </sub>slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABA<sub>A </sub>slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABA<sub>A </sub>subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABA<sub>A </sub>fast IPSCs, but not slow GABA<sub>A</sub>-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABA<sub>A </sub>fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components.</p> <p>Conclusion</p> <p>GABA<sub>A </sub>slow IPSCs displayed durations that were approximately 4 fold longer than typical GABA<sub>A </sub>fast IPSCs, but shorter than GABA<sub>B</sub>-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABA<sub>A </sub>slow IPSCs into computational models of cortical function will help improve our understanding of cortical information processing.</p
    corecore