22 research outputs found

    The role of rapid maxillary expansion in the promotion of oral and general health

    Get PDF
    Rapid maxillary expansion (RME) is an effective orthopedic procedure that can be used to address problems concerned with the growth of the midface. This procedure also may produce positive side effects on the general health of the patient. The aim of the present consensus paper was to identify and evaluate studies on the changes in airway dimensions and muscular function produced by RME in growing patients. A total of 331 references were retrieved from a database search (PubMed). The widening of the nasal cavity base after midpalatal suture opening in growing patients allows the reduction in nasal airway resistance with an improvement of the respiratory pattern. The effects of RME on the upper airway, however, have been described as limited and local, and these effects become diminished farther down the airway, possibly as a result of soft-tissue adaptation. Moreover, limited information is available about the long-term stability of the airway changes produced by RME. Several studies have shown that maxillary constriction may play a role in the etiology of more severe breathing disorders such as obstructive sleep apnea (OSA) in growing subjects. Early orthodontic treatment with RME is able to reduce the symptoms of OSA and improve polysomnographic variables. Finally, early orthopedic treatment with RME also is beneficial to avoid the development of facial skeletal asymmetry resulting from functional crossbites that otherwise may lead to functional and structural disorders of the stomatognathic system later in life

    Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil

    No full text
    The aim of the present study was to determine whether avian metapneumovirus (aMPV)-related viruses were present in wild and synanthropic birds in Brazil. Therefore, we analysed samples from wild birds, feral pigeons and domestic chickens in order to perform a phylogenetic comparison. To detect the presence of aMPV, a nested reverse transcriptase-polymerase chain reaction was performed with the aim of amplifying a fragment of 270 bases for subtype A and 330 bases for subtype B, comprising the gene coding the G glycoprotein. Positive samples for aMPV subtypes A and B were found in seven (13.2%) different asymptomatic wild birds and pigeons (50%) that had been received at the Bosque dos Jequitibas Zoo Triage Center, Brazil. Also analysed were positive samples from 15 (12.9%) domestic chickens with swollen head syndrome from several regions of Brazil. The positive samples from wild birds, pigeons and domestic chickens clustered in two major phylogenetic groups: some with aMPV subtype A and others with subtype B. The similarity of the G fragment nucleotide sequence of aMPV isolated from chickens and synanthropic and wild avian species ranged from 100 to 97.5% (from 100 to 92.5% for the amino acids). Some positive aMPV samples, which were obtained from wild birds classified in the Orders Psittaciformes, Anseriformes and Craciformes, clustered with subtype A, and others from the Anas and Dendrocygma genera (Anseriformes Order) with subtype B. The understanding of the epizootiology of aMPV is very important, especially if this involves the participation of non-domestic bird species, which would add complexity to their control on farms and to implementation of vaccination programmes for aMPV.40544545
    corecore