306 research outputs found
Growth factor in f(T) gravity
We derive the evolution equation of growth factor for the matter over-dense
perturbation in gravity. For instance, we investigate its behavior in
power law model at small redshift and compare it to the prediction of
CDM and dark energy with the same equation of state in the framework
of Einstein general relativity. We find that the perturbation in gravity
grows slower than that in Einstein general relativity if \p f/\p T>0 due to
the effectively weakened gravity.Comment: 15 pages,1 figure; v2,typos corrected; v3, discussions added,
accepted by JCA
Accelerating universe from F(T) gravity
It is shown that the acceleration of the universe can be understood by
considering a F(T) gravity models. For these F(T) gravity models, a variant of
the accelerating cosmology reconstruction program is developed. Some explicit
examples of F(T) are reconstructed from the background FRW expansion history.Comment: 13 pages, references adde
Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering
We present the first measurements of the \vec{e}p->epg cross section in the
deeply virtual Compton scattering (DVCS) regime and the valence quark region.
The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross
section indicates the twist-2 dominance of DVCS, proving that generalized
parton distributions (GPDs) are accessible to experiment at moderate Q^2. The
helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We
present the first model-independent measurement of linear combinations of GPDs
and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication.
References added. One figure remove
QCD ghost f(T)-gravity model
Within the framework of modified teleparallel gravity, we reconstruct a f(T)
model corresponding to the QCD ghost dark energy scenario. For a spatially flat
FRW universe containing only the pressureless matter, we obtain the time
evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate
the effective torsion equation of state parameter of the QCD ghost f(T)-gravity
model as well as the deceleration parameter of the universe. Furthermore, we
fit the model parameters by using the latest observational data including
SNeIa, CMB and BAO data. We also check the viability of our model using a
cosmographic analysis approach. Moreover, we investigate the validity of the
generalized second law (GSL) of gravitational thermodynamics for our model.
Finally, we point out the growth rate of matter density perturbation. We
conclude that in QCD ghost f(T)-gravity model, the universe begins a matter
dominated phase and approaches a de Sitter regime at late times, as expected.
Also this model is consistent with current data, passes the cosmographic test,
satisfies the GSL and fits the data of the growth factor well as the LCDM
model.Comment: 19 pages, 9 figures, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1111.726
Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime
We present measurements of the ep->ep pi^0 cross section extracted at two
values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson
Lab Hall A. The kinematic range allows to study the evolution of the extracted
hadronic tensor as a function of Q^2 and W. Results will be confronted with
Regge inspired calculations and GPD predictions. An intepretation of our data
within the framework of semi-inclusive deep inelastic scattering has also been
attempted
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases
Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei
We present the results of a study performed on the interactions of 10.6A GeV
gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac-
tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec-
tile fragments. The experimental data are analyzed with particular emphasis of
target separation interactions in emulsions and study of criticalexponents.
Multiplicity distributions of the fast-moving projectile fragments are inves-
tigated. Charged fragment moments, conditional moments as well as two and three
-body asymmetries of the fast moving projectile particles are determined in
terms of the total charge remaining bound in the multiply charged projectile
fragments. Some differences in the average yields of helium nuclei and heavier
fragments are observed, which may be attributed to a target effect. However,
two and three-body asymmetries and conditional moments indicate that the
breakup mechanism of the projectile seems to be independent of target mass. We
looked for evidence of critical point observable in finite nuclei by study the
resulting charged fragments distributions. We have obtained the values for the
critical exponents gamma, beta and tau and compare our results with those at
lower energy experiment (1.0A GeV data). The values suggest that a phase
transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics
Journal
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
Searches for lepton-flavour-violating decays of the Higgs boson in TeV collisions with the ATLAS detector
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and
H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample
of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated
luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard
Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
- …