4 research outputs found
Seven fatalities associated with ethylphenidate
Ethylphenidate is a stimulant novel psychoactive substance that is an analogue of the prescription drug methylphenidate (Ritalin®). Methylphenidate is used commonly for the treatment of attention deficit hyperactivity disorder. Due to its stimulant effects ethylphenidate is being abused. There is a single case report of a death associated with ethylphenidate in Germany, and a case series of 19 deaths in the East of Scotland, but otherwise, the contribution of ethylphenidate to death is poorly documented. We report the analytical results of 7 cases (between February 2013 and January 2015) in which ethylphenidate was detected and quantitated with a validated liquid chromatography tandem mass spectrometry method (LC-MS/MS). The individuals (all male) ranged in age from 23 to 49 years (median 25 years). The concentration of ethylphenidate in the cases ranged from 0.026mg/L to 2.18mg/L in unpreserved post-mortem femoral blood. Only one case had ethylphenidate present as a sole drug. All other cases had at least 2 other drug classes present (benzodiazepines, heroin, methadone antipsychotics, other new psychoactive compounds). Ethylphenidate toxicity was the sole contribution to the cause of death in one case. Hanging was the cause of death in 2 cases, with the other 4 cases being reported as having occurred due to mixed drug toxicity. These data will further help with the interpretation of post-mortem ethylphenidate levels
Secretory cells dominate airway CFTR expression and function in human airway superficial epithelia
Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type specific transduction of wild-Type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl2 secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide purinergic regulatory system that controls CFTRmediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-Type CFTR produced CFTR-mediated Cl2 secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells