42 research outputs found

    The position of graptolites within Lower Palaeozoic planktic ecosystems.

    Get PDF
    An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai

    Strategies in the use of light energy by Genipa spruceana Steyerm seedlings subjected to flooding

    Get PDF
    In an attempt to elucidate strategies in the use of light energy by G. spruceana seedlings subjected to flooding, we investigated the capacity of light capture and use of light energy by G. spruceana in three growing conditions: 1- absence of flooding (SA), 2- partially flooded (PA) and 3- totally flooded (TA). Destructive and non-destructive measurements, such as specific leaf area, chloroplast pigment (chlorophyll and carotenoids) content and fluorescence analyses, were made at regular intervals over a period of 90 days. All parameters decreased in seedlings subjected to flooding. Plants of treatment TA dropped all of their leaves after 30 days of complete submergence. Chloroplast pigment content differed between treatments SA and TA after 30 days from the start of the experiment; whereas SA and PA plants only differed for this variable after 90 days. Plants subjected to flooding (PA and TA) exhibited high dissipation of photochemical de-excitation (DIo/ABS), indicating a limited efficiency of light energy use. This fact was proven by the performance index (PI ABS) only in analyses after 90 days, and no significant difference was verified for PI ABS among treatments up to 30 days. Therefore, considering that G. spruceana seedlings subjected to flooding reduced the chloroplast pigment content more quickly than PI ABS, we suggest that the light energetic flux in G. spruceana seedlings subjected to flooding, in the beginning, is more restricted to a decrease in the structures that captures light (reduction chlorophyll pigment content) than how the photosynthetic apparatus functions (alterations in photochemical efficiency of photosystem II).Na tentativa de elucidar estratégias de utilização da energia luminosa em plantas jovens de Genipa spruceana Steyerm submetidas ao alagamento, nós investigamos a capacidade de captura e uso de energia luminosa em G. spruceana sob três condições de crescimento1- ausência de alagamento (SA), 2- plantas parcialmente alagadas (PA) e 3- plantas totalmente alagadas (TA). Medidas de área foliar específica, teores de pigmentos cloroplastídicos e fluorescência da clorofila a foram feitas em intervalos regulares no período de 90 dias. Todos os parâmetros analisados diminuíram em condições de alagamento (PA e TA). Aos 30 dias, as plantas no tratamento TA sofreram abscisão foliar. Os teores dos pigmentos cloroplastídicos (clorofilas e carotenóides) entre os tratamentos SA e TA diferiram aos 30 dias. Ao passo que, somente foi possível verificar diferenças entre os tratamentos SA e PA aos 90 dias. As plantas submetidas ao alagamento (PA e TA) exibiram alta dissipação de energia de excitação (DIo/ABS) indicando limitada eficiência na utilização da energia luminosa. Este fato foi comprovado pelos resultados do índice de desempenho (PI ABS) somente ao fim do período experimental (90 dias). Mas, não foi verificado diferença para PI ABS entre os tratamentos aos 30 dias. Portanto, considerando que G. spruceana submetidas ao tratamento TA reduziram seus teores de clorofilas mais rapidamente do que decrescem seus PI ABS, sugere-se que o fluxo de energia luminosa em plântulas de G. spruceana sob alagamento total, no início, é mais restringido pelo decréscimo na estrutura de captura de luz (diminuição dos pigmentos cloroplastídicos) do que no funcionamento do aparato fotossintético (alterações na eficiência fotoquímica do fotossistema II)

    Experimental progress in positronium laser physics

    Get PDF

    Gene silencing: concepts, applications, and perspectives in woody plants

    Full text link
    corecore