87 research outputs found

    Gamma-induced background in the KATRIN main spectrometer

    Get PDF
    International audienceThe KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β -particles from tritium β -decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    The 2017 Dutch physical activity guidelines

    No full text
    Background: The objective of this study was to derive evidence-based physical activity guidelines for the general Dutch population. Methods: Two systematic reviews were conducted of English language meta-analyses in PubMed summarizing separately randomized controlled trials and prospective cohort studies on the relation between physical activity and sedentary behaviour on the one hand and the risk of all-cause mortality and incidence of 15 major chronic diseases and conditions on the other hand. Other outcome measures were risk factors for cardiovascular disease and type 2 diabetes, physical functioning, and fitness. On the basis of these reviews, an expert committee derived physical activity guidelines. In deriving the guidelines, the committee first selected only experimental and observational prospective findings with a strong level of evidence and then integrated both lines of evidence. Results: The evidence found for beneficial effects on a large number of the outcome measures was sufficiently strong to draw up guidelines to increase physical activity and reduce sedentary behaviour, respectively. At the same time, the current evidence did not provide a sufficient basis for quantifying how much physical activity is minimally needed to achieve beneficial health effects, or at what amount sedentary behaviour becomes detrimental. A general tenet was that at every level of current activity, further increases in physical activity provide additional health benefits, with relatively larger effects among those who are currently not active or active only at light intensity. Three specific guidelines on (1) moderate- and vigorous-intensity physical activity, (2) bone- and musclestrengthening activities, and (3) sedentary behaviour were formulated separately for adults and children. Conclusions: There is an unabated need for evidence-based physical activity guidelines that can guide public health policies. Research in which physical activity is measured both objectively (quantity) and subjectively (type and quality) is needed to provide better estimates of the type and actual amount of physical activity required for health

    Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial.

    No full text
    The optimal ventilatory settings in patients after cardiac arrest and their association with outcome remain unclear. The aim of this study was to describe the ventilatory settings applied in the first 72 h of mechanical ventilation in patients after out-of-hospital cardiac arrest and their association with 6-month outcomes. Preplanned sub-analysis of the Target Temperature Management-2 trial. Clinical outcomes were mortality and functional status (assessed by the Modified Rankin Scale) 6 months after randomization. A total of 1848 patients were included (mean age 64 [Standard Deviation, SD = 14] years). At 6 months, 950 (51%) patients were alive and 898 (49%) were dead. Median tidal volume (V <sub>T</sub> ) was 7 (Interquartile range, IQR = 6.2-8.5) mL per Predicted Body Weight (PBW), positive end expiratory pressure (PEEP) was 7 (IQR = 5-9) cmH <sub>2</sub> 0, plateau pressure was 20 cmH <sub>2</sub> 0 (IQR = 17-23), driving pressure was 12 cmH <sub>2</sub> 0 (IQR = 10-15), mechanical power 16.2 J/min (IQR = 12.1-21.8), ventilatory ratio was 1.27 (IQR = 1.04-1.6), and respiratory rate was 17 breaths/minute (IQR = 14-20). Median partial pressure of oxygen was 87 mmHg (IQR = 75-105), and partial pressure of carbon dioxide was 40.5 mmHg (IQR = 36-45.7). Respiratory rate, driving pressure, and mechanical power were independently associated with 6-month mortality (omnibus p-values for their non-linear trajectories: p < 0.0001, p = 0.026, and p = 0.029, respectively). Respiratory rate and driving pressure were also independently associated with poor neurological outcome (odds ratio, OR = 1.035, 95% confidence interval, CI = 1.003-1.068, p = 0.030, and OR = 1.005, 95% CI = 1.001-1.036, p = 0.048). A composite formula calculated as [(4*driving pressure) + respiratory rate] was independently associated with mortality and poor neurological outcome. Protective ventilation strategies are commonly applied in patients after cardiac arrest. Ventilator settings in the first 72 h after hospital admission, in particular driving pressure and respiratory rate, may influence 6-month outcomes

    Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial.

    No full text
    Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO <sub>2</sub> ) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO <sub>2</sub> with patients' outcome. Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA (TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 8 h until day 3. Hypoxemia was defined as PaO <sub>2</sub> < 60 mmHg and severe hyperoxemia as PaO <sub>2</sub> > 300 mmHg. Mortality and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months. 1418 patients were included in the analysis. The mean age was 64 ± 14 years, and 292 patients (20.6%) were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia was 69 mmHg (Risk Ratio, RR = 1.009, 95% CI 0.93-1.09), and for hyperoxemia was 195 mmHg (RR = 1.006, 95% CI 0.95-1.06). The time exposure, i.e., the area under the curve (PaO <sub>2</sub> -AUC), for hyperoxemia was significantly associated with mortality (p = 0.003). In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients. clinicaltrials.gov NCT02908308 , Registered September 20, 2016
    corecore