148 research outputs found

    Eynard-Mehta theorem, Schur process, and their pfaffian analogs

    Get PDF
    We give simple linear algebraic proofs of Eynard-Mehta theorem, Okounkov-Reshetikhin formula for the correlation kernel of the Schur process, and Pfaffian analogs of these results. We also discuss certain general properties of the spaces of all determinantal and Pfaffian processes on a given finite set.Comment: AMSTeX, 21 pages, a new section adde

    Nonintersecting Brownian motions on the half-line and discrete Gaussian orthogonal polynomials

    Full text link
    We study the distribution of the maximal height of the outermost path in the model of NN nonintersecting Brownian motions on the half-line as N→∞N\to \infty, showing that it converges in the proper scaling to the Tracy-Widom distribution for the largest eigenvalue of the Gaussian orthogonal ensemble. This is as expected from the viewpoint that the maximal height of the outermost path converges to the maximum of the Airy2\textrm{Airy}_2 process minus a parabola. Our proof is based on Riemann-Hilbert analysis of a system of discrete orthogonal polynomials with a Gaussian weight in the double scaling limit as this system approaches saturation. We consequently compute the asymptotics of the free energy and the reproducing kernel of the corresponding discrete orthogonal polynomial ensemble in the critical scaling in which the density of particles approaches saturation. Both of these results can be viewed as dual to the case in which the mean density of eigenvalues in a random matrix model is vanishing at one point.Comment: 39 pages, 4 figures; The title has been changed from "The limiting distribution of the maximal height of nonintersecting Brownian excursions and discrete Gaussian orthogonal polynomials." This is a reflection of the fact that the analysis has been adapted to include nonintersecting Brownian motions with either reflecting of absorbing boundaries at zero. To appear in J. Stat. Phy

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems

    Renormalized energy concentration in random matrices

    Get PDF
    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of [SS1,SS3]. Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix ÎČ\beta-sine processes on the real line (beta=1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the beta=2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.Comment: last version, to appear in Communications in Mathematical Physic

    Fredholm Determinants, Differential Equations and Matrix Models

    Full text link
    Orthogonal polynomial random matrix models of NxN hermitian matrices lead to Fredholm determinants of integral operators with kernel of the form (phi(x) psi(y) - psi(x) phi(y))/x-y. This paper is concerned with the Fredholm determinants of integral operators having kernel of this form and where the underlying set is a union of open intervals. The emphasis is on the determinants thought of as functions of the end-points of these intervals. We show that these Fredholm determinants with kernels of the general form described above are expressible in terms of solutions of systems of PDE's as long as phi and psi satisfy a certain type of differentiation formula. There is also an exponential variant of this analysis which includes the circular ensembles of NxN unitary matrices.Comment: 34 pages, LaTeX using RevTeX 3.0 macros; last version changes only the abstract and decreases length of typeset versio

    Noncolliding Squared Bessel Processes

    Full text link
    We consider a particle system of the squared Bessel processes with index Îœ>−1\nu > -1 conditioned never to collide with each other, in which if −1<Îœ<0-1 < \nu < 0 the origin is assumed to be reflecting. When the number of particles is finite, we prove for any fixed initial configuration that this noncolliding diffusion process is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel called the correlation kernel. When the number of particles is infinite, we give sufficient conditions for initial configurations so that the system is well defined. There the process with an infinite number of particles is determinantal and the correlation kernel is expressed using an entire function represented by the Weierstrass canonical product, whose zeros on the positive part of the real axis are given by the particle-positions in the initial configuration. From the class of infinite-particle initial configurations satisfying our conditions, we report one example in detail, which is a fixed configuration such that every point of the square of positive zero of the Bessel function JÎœJ_{\nu} is occupied by one particle. The process starting from this initial configuration shows a relaxation phenomenon converging to the stationary process, which is determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in J. Stat. Phy

    Some Universal Properties for Restricted Trace Gaussian Orthogonal, Unitary and Symplectic Ensembles

    Full text link
    Consider fixed and bounded trace Gaussian orthogonal, unitary and symplectic ensembles, closely related to Gaussian ensembles without any constraint. For three restricted trace Gaussian ensembles, we prove universal limits of correlation functions at zero and at the edge of the spectrum edge. In addition, by using the universal result in the bulk for fixed trace Gaussian unitary ensemble, which has been obtained by Goš\ddot{o}tze and Gordin, we also prove universal limits of correlation functions for bounded trace Gaussian unitary ensemble.Comment: 19pages,bounded trace Gaussian ensembles are adde

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges

    Full text link
    For the orthogonal-unitary and symplectic-unitary transitions in random matrix theory, the general parameter dependent distribution between two sets of eigenvalues with two different parameter values can be expressed as a quaternion determinant. For the parameter dependent Gaussian and Laguerre ensembles the matrix elements of the determinant are expressed in terms of corresponding skew-orthogonal polynomials, and their limiting value for infinite matrix dimension are computed in the vicinity of the soft and hard edges respectively. A connection formula relating the distributions at the hard and soft edge is obtained, and a universal asymptotic behaviour of the two point correlation is identified.Comment: 37 pgs., 1fi

    Scaled limit and rate of convergence for the largest eigenvalue from the generalized Cauchy random matrix ensemble

    Full text link
    In this paper, we are interested in the asymptotic properties for the largest eigenvalue of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble GCyGCy, whose eigenvalues PDF is given by const⋅∏1≀j<k≀N(xj−xk)2∏j=1N(1+ixj)−s−N(1−ixj)−sˉ−Ndxj,\textrm{const}\cdot\prod_{1\leq j<k\leq N}(x_j-x_k)^2\prod_{j=1}^N (1+ix_j)^{-s-N}(1-ix_j)^{-\bar{s}-N}dx_j,where ss is a complex number such that ℜ(s)>−1/2\Re(s)>-1/2 and where NN is the size of the matrix ensemble. Using results by Borodin and Olshanski \cite{Borodin-Olshanski}, we first prove that for this ensemble, the largest eigenvalue divided by NN converges in law to some probability distribution for all ss such that ℜ(s)>−1/2\Re(s)>-1/2. Using results by Forrester and Witte \cite{Forrester-Witte2} on the distribution of the largest eigenvalue for fixed NN, we also express the limiting probability distribution in terms of some non-linear second order differential equation. Eventually, we show that the convergence of the probability distribution function of the re-scaled largest eigenvalue to the limiting one is at least of order (1/N)(1/N).Comment: Minor changes in this version. Added references. To appear in Journal of Statistical Physic
    • 

    corecore